

Features and Benefits

- Removal of solid and gel-like oil aging products
- Increased operating reliability of the system as a result of fewer deposits in hydraulic valves
- Increased oil service life
- Available for existing/new systems

Applications

- Turbine Lubrication Systems
- Plastic Injection Molding Machines
- Industrial Forges and Presses

Description

The service-friendly Varnish Elimination Unit (VEU-F) is designed for use with mineral oils and is particularly effective at removing oil-aging products (varnish). Varnish takes the form of oil-insoluble aging products which settle in the tank, in valves, or in bearings. These can be filterable gels or solid paint-type deposits.

The VEU-F series product is used in bypass flow. The removal of varnish is based on reducing the oil solubility for varnish with subsequent filtration, using a combination of an air cooled heat exchanger in series with DiMicron series filter elements.

Specifications

Fluid Viscosity: 75 to 2,000 SUS

Pump Operating Pressure: $100 \mathrm{psi}(6.9 \mathrm{bar}) \max$
Differential Pressure Across Elements: 72.5 psi (5 bar) max
Fluid Temperature: $15^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-9.4^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Ambient Temperature: $32^{\circ} \mathrm{F}$ to $155^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.68^{\circ} \mathrm{C}\right)$
Seals: FKM
Maximum Flow Rate: VEU-F-10 10 gpm ($38 \mathrm{~L} / \mathrm{min}$)
VEU-F-15 $\quad 15 \mathrm{gpm}$ (57 L/min)
Fluids: Standard mineral oils
Consult factory for other fluids
Port Connections: INLET/OUTLET $15 / 8^{\prime \prime} \times 12 \mathrm{UNF}$ - Male
Weight (empty): VEU-F-10 $900 \mathrm{lbs}(408 \mathrm{~kg})$
VEU-F-15 $975 \mathrm{lbs}(442 \mathrm{~kg})$
Power Supply: 460 V AC / $60 \mathrm{~Hz} / 3$ Ph.
575 V AC / $60 \mathrm{~Hz} / 3 \mathrm{Ph}$.
Protection Class: NEMA 2

Sizing

Varnish Elimination Unit VEU-F

Metric dimensions in (mm).

How to Build a Valid Model Number for a Schroeder VEU-F:

Example: NOTE: One option per box

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Model	Flow Rate	Mobility	Voltage	Filter Element
VEU-F	$10=10 \mathrm{gpm}$	S = Stationary	O60 $=460 \mathrm{~V} / 3$ Phase	DM02 $=$ N15DM002, $2 \mu \mathrm{~m}$ Absolute DM05 = N15DM005, 5 $\mu \mathrm{m}$ Absolute DM10 $=$ N15DM010, $10 \mu \mathrm{~m}$ Absolute
	$15=15 \mathrm{gpm}$	$\mathrm{M}=$ Mobile	P60 $=575 \mathrm{~V} / 3$ Phase	

Model Code	Mirron Rating	Part No.
N15DM002	2	1251590
N15DM005	5	3252552
N15DM010	10	3115180

