

In-Line Bulk Fuel Coalescing Filter

16 gpm <u>60 L/min</u> 150 psi <u>10 bar</u>

Applications

POINT OF USE FUEL DISPENSING

UNLOADING

HIGH-FLOW FUEL INJECTION SYSTEMS

BUL KIDNE RECIR

BULK TANK KIDNEY LOOP / RECIRCULATION

Model no. of filter in photograph is: ICFVS16LEP

Model no. of filter in photograph is: ICFM

Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier III and Tier IV engine components against failures caused by particulate and water transferred from bulk fuel tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- Housing design allows for field upgrade of any available option
- Schroeder Anti-Static Pleat[®] Media (ASP) is standard for all coalescing elements
- Pressure bypass indicator setting at 36 psi, with bypass valve cracking at 40 psi, allows for early indication before bypass of filter for advanced maintenance notice
- In applications >32°F (0°C) complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Now available as a UL Certified, marine specific, fuel filter (ICFM)

POWER

GENERATION

COMMON RAIL INJECTOR SYSTEMS

FLEET

0

MINING

TECHNOLOGY

AGRICULTURE

BULK FUEL

FILTRATION

In-Line Bulk Fuel Coalescing Filter ICF

		*Coalescing Elements Patent-Pending	
Flow Rating:	Up to 16 gpm (60 L/min) for ULSD1	5	Filter ICF
Inlet/Outlet Connection:	1 ½" NPTF Standard, -16 (ORB) SAI	E J1926 Optional	Housing
Max. Operating Pressure:	150 psi (10 bar)		Housing Specifications
Min. Yield Pressure:	450 psi (31 bar)		BDA
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-200	5	DUR
Temp. Range:	32°F to 165°F (0°C to 74°C) standa -20°F to 165°F (-29°C to 74°C) H o	rd and AWD option ption	GHPF
	36 psi (2.5 bar) (Lower indication o	ptions available)	GHCF
Bypass Valve Cracking:			
Element Bowl:	Aluminum - Coating Option see Bo Steel - Epoxy Paint w/ High-phos Ele	ectroless Nickel Plating (Standard)	QCF
Filter Housing Weight:	15 lbs (6.8 kg) - Base unit without o	options or element	BDS
Element Change Clearance:	Access from top (remove cap) - 18" Access from below (remove bowl) -		BDS2
Housing Sump:	32 oz. (0.95 L)		
Optional:		ersion heater (power 120VAC, 235W), ensor w/ or w/out remote mount light and	BDS3
Note: For other electrical options, co			BDS4
Element sold separately	,		LVH-F
			LVH-C
			BDFC
	<u></u>		BDFP
			BDC
			HDP
		U	HDPD
	Optional Brackets:		ВСС
		Option 'R'	
	м	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	

In-Line Bulk Fuel Coalescing Filter

Filter Element Selection Coalescing Element Performance Information Elements Sold Separately

> Highlighted product eligible for

QuickDelivery

Coalescing Element	Pressu	ure Side Coalescing
	Recommended Flow	Single Pass Water Removal Efficiency
C184Z5V	16 gpm	≥ 99.5%
C184Z3V	16 gpm	≥ 99.5%
C184Z7VE	16 gpm	Contact Factory for Element Data

Flow Direction: Inside Out

Element Nominal Dimensions: 4.0" (102 mm) O.D. x 18.5" (470 mm) long *Schroeder Anti-Static Pleat Media (ASP®) is standard

*NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.

In-Line Fuel Coalescing Filter

INDICATOR, 25 PSID 40 PSID BYPASS SETTING

STANDARD

BLEED PORT

*Coalescing Elements Patent-Pending

CAP AND HEAD OPTIONAL: ANODIZED

OPTIONAL: REINFORCING MOUNTING FLANGE

HOUSING HIGH-PHOS ELECTROLESS NICKEL PLATED AND EPOXY PAINTED

PORTING: 1.5 INCH N.P.T.F OPTIONAL: SAE-16

- NOTES: Water in fuel sensor (WIF) supplied w/ or w/out remote mount indicator light to show full filter housing sump T Option = WIE sensor only w/out filter housing
 - T Option = WIF sensor only w/out filter housing sump full indication light or control panel
 - I Option = WIF sensor w/ remote mount filter housing sump full indicator light and NEMA 4X control panel supplied

NOTES: Filter Sump Heater Control Panel dimension: 6.5" W x 5.5" H x 6.5" D (165 W x 140 H x 165 D)

> Automatic Water Drain Control Panel dimension: 10" W x 8" H x 12" D (254 W x 203.20 H x 304.80 D) *For use above $32^{\circ}F(0^{\circ}C)$ only Electrical cable length (Control Panel to ICF): 4 ft. (1.22m) Hose length for Automatic Water Drain feature (ICF to Tank): 6 ft.(1.83m)

All control panels "NEMA 4X" rated

Metric dimensions in ().

NOTES: Remote Tank dimension: 5 Gallon Tank: 22" W x 9.25" L x 7.125" H (558.80 W x 234.95 L x 180.97 H) 20 Gallon Tank: 15" W x 11" L x 31" H (381 W x 279.40 L x 787.40 H) Power supply for tank high level LED light: 9 VDC (battery included) Supplied w/ 9 VDC terminal for customer wiring provided.

Metric dimensions in ().

Highlighted

In-Line Fuel Coalescing Filter *Coalescing Elements Patent-Pending

For details on how to order the UL Listed ICFM, Contact Factory

Unless automatic drain option is specified, ICF units will come standard with manual drain

Coalescing element sold separately and selected below

If ordering the collection of options (Box 5. B, Box 6. S, and Box 8. H) together, please contact factory Box 2. Viton[®] is a registered trademark of DuPont Dow Elastomers

Box 6 and 7. Only two boxes that allow combination of options (S + I or EP + A)

Box 8. Filter sump heater option only available when ordered w/out automatic water drain (AWD5 or AWD20) Box 9. AWD fail safe is shown on page 25 (ICF)

Element Part Number Pressure Side Coalescing Max Flow Single Pass Water Removal Efficiency C184Z5V 16 gpm ≥ 99.5% C184Z3V 16 gpm $\geq 99.5\%$ C184Z7VE 16 gpm Contact Factory for Element Data

Highlighted product eligible for QuickDelivery

Element

Selection

Part Number

Fluid **Compatibility** NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.

Flow Direction: Inside Out

Element Nominal Dimensions: 4.0" (102 mm) O.D. x 18.5" (470 mm) long *Schroeder Anti-Static Pleat Media (ASP®) is standard

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- **Biodiesel blends**
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

Model no. of filter in photograph

is: BDF211GGZ3CG5VD5

Model no. of filter in photograph

Markets

INDUSTRIAL

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

BULK FUEL FILTRATION

Applications

integral or blocked bypass to suit application

for particulate and water content in diesel fuel

Fuel dispensing and transfer filtration solution with choice of

Designed with integrated particulate removal pre-filtration for downstream coalescing filter protection and extended element life Routine element change only needed on particulate pre-filter,

Updated BDF design incorporates GHPF and GHCF filter housings for a reduced cost, improved function, and increased capacity ■ Patented GeoSeal[®] element sealing interface ensures quality

Particulate filtration available at 1 or 3 microns utilizing synthetic

Housing design allows for field upgrade of any available option Complete automation is achievable with a water and fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown in application

Z-Media[®] element for better contamination control Patented, three-phase, particulate and fuel/water separation

Allows users to achieve or exceed the manufacturer requirements

Features and Benefits

which saves time and money

element replacement

media technology

>32°F (0°C)

Easy mounting and element service

HIGH-FLOW FUEL

INJECTION SYSTEMS

BULK TANK KIDNEY LOOP RECIRCULATION

Bulk Diesel Filter

*Coalescing Elements Patent-Pending

is: BDF111GGZ3CG5VD5

BDF Bulk Diesel Filter

Filter Housing Specifications

Flow Rating:	BDF1: up to 25 gpm (95 L/min)	
	BDF2: up to 50 gpm (189 L/min)	
Inlet/Outlet Connection:	-24 (ORB) SAE J1926	
Max. Operating Pressure:	150 psi (10 bar)	
Temp. Range:		optional water sump heater, 32°F to 225°F standard features and AWD options
Bypass Indication:	<u>Particulate Filter</u> 35 psi (2.4 bar)	<u>Coalescing Filter</u> 35 psi (2.4 bar)
Bypass Valve Cracking:	<u>Particulate Filter</u> 40 psi (2.8 bar)	<u>Coalescing Filter</u> 40 psi (2.8 bar)
Materials of Construction:	Particulate & Coalescing Filter Porting Head: Cast Aluminum, Anodized Element Case: Aluminum, Anodized	Coalescing Filter Only Sump: Cast Aluminum, Anodized
Weight:	BDF1: 46.5 lbs	BDF2: 89 lbs
Element Change Clearance:	<u>Particulate Filter</u> 2" (51 mm)	<u>Coalescing Filter</u> 4.5" (114 mm)
Opt. Water Sump Heater:	120VAC, 1 x 74W (BDF1) / 2 x 74W	(BDF2)
Opt. Visual Electrical Indicator:	120VAC	

BDF1

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Filter

BDF

Element Particulate HDPD Performance Information BCC

Element Water Coalescing Performance Information Particulate and Coalescing Elements Sold with System

Highlighted product eligible for QuickDelivery

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Metric dimensions in ().

Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171

		···	
Particulate Elements	DHC(g)	$oldsymbol{eta}_{x}$ (c) \geq 200	β _x (c) ≥ 1000
11GGZ1V	172	<4.0	4.2
11GGZ3V	148	<4.0	4.8

Coalescing Element	Pressure Side Coalescing	
	Max Flow	Single Pass Water Removal Efficiency
C125GZ5V	25 gpm	≥ 95%

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

 Particulate Element

 Flow Direction:
 Outside In

 Element Nominal Dimensions:
 5.0" (27 mm) O.D. x 11" (279 mm) long

 Coalescing Element

Flow Direction: Inside Out Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

DF Bulk Diesel Filter

In-Line Water Absorbing Diesel Fuel Bag Filter

BDA

35 or 70 gpm

Applications

BULK FUEL

Application Introduction:

The BDA provides a high capacity water absorbing solution for diesel fuel in a familiar process filtration housing configuration. The BDA combines the high volume particulate filtration performance of a bag housing element with a high capacity water absorbent media to provide an economic solution for particulate and water removal in diesel fuel systems. The BDA can be used for dispensing or kidney-loop installations. The filter is designed for use with standard diesel fuel as well as bio-based blends.

Model no. of filter in photograph is: BDA-H-2-V-P32

132 or 265 L/min BDA 145 psi 10 bar

Features and Benefits

- One housing and bag filter provides both high capacity particulate and water removal performance
- A particulate filtration rating of 10 µm is standard
- Housings are high quality stainless steel, CE Marked vessels
- A positive bag seating mechanism helps to minimize the risk of seal bypass
- Fixed legs with height and 360° rotational adjustment allow for various mounting options

BDA In-Line Water Absorbing Diesel Fuel Filter

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

In-Line Water Absorbing Diesel Fuel Filter BDA

BDA In-Line Water Absorbing Diesel Fuel Filter

Model Number Selection	BDA - - Example: NOTE: One option p BOX 1 BOX 2 BC BDA - H	er box DX 3 BOX 4 1 - V -	BOX 5 BOX 0 P32 - DPC		AH1VP32DPG
		BOX 2BOX 3ct ConfigurationBag Element Size= Housing1 = Size 12 = Size 2		n t Size ze 1	BOX 4 Housing Seal Material V = Viton®
	BOX 5 Porting P32 = 2" NPTF F32 = 2" SAE 4-Bolt Flange, Code 61 B32 = 2" BSPF		BOX 6 Filter Indicator Omit = None DPG = Differential Pressure Gaug		
Element Part Number	NOTES: Bag Filters sold se Water Absorbing Element		sted below Max Flow Rate gpm (L/min)	Micron Rating	Bag Element Dimensions
Selection	FA210P1PW FA210P2PW	Size 1 Size 2	35 (132) 70 (265)	10 μm 10 μm	7" (178 mm) O.D. x 17" (432 mm) long 7" (178 mm) O.D. x 32" (813 mm) long

- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

CUD **GeoSeal® High-Flow Particulate Filter**

Applications

BULK FUEL

UNLOADING

Diesel fuel particulate filter for dispensing, transfer

All-aluminum filter housing is fully compatible with

Minimal clearance needed for element service, ideal

Port to port and mounting pattern dimensions match

Cartridge style element improves performance and reduces

Features and Benefits

or polishing filtration applications ■ Uses patented GeoSeal[®] elements

waste compared to spin-on solutions

diesel and biodiesel

for enclosure installations

standard spin-on assembly

INJECTION SYSTEMS

Model No. of filter in photograph is: GHPF11GGZ3VS24D5R

Flow Rating:	Up to 100 gpm (380 L/min)
Max. Operating Pressure:	150 psi (10.3 bar)
Min. Yield:	2600 psi (179 bar)
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar)
	Cast Aluminum, Anodized Aluminum, Anodized
Weight of GHPF:	7.64 lbs. (3.47 kg)
Element Change Clearance:	2" (51 mm)

Markets

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING

TECHNOLOGY

RAILROAD

BULK FUEL

FILTRATION

GHPF	
100 gpm	ICF
100 gpm <u>380 L/mir</u>	BDF
150 psi	BDA
10.3 bar	GHPF
	GHCF
	QCF
	BDS
	BDS2
	BDS3
	BDS4
	LVH-F
	LVH-C
	BDFC
Filter	BDFP
Housing Specification	onsc
	HDP
	HDPD
	BCC

GHPF **GeoSeal® High-Flow Particulate Filter**

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information

		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Media Type	Element	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
Traditional Excellement® Z-Media®	11GGZ1V 11GGZ3V 11GGZ5V 11GGZ10V 11GGZ25V	<4.0 4.6 5.9 11.4 15.8	4.5 5.8 7.8 13.2 17.5	

Dirt Holding Capacity

Media Type	Element	DHC (gm)	
Traditional Excellement® Z-Media®	11GGZ1V 11GGZ3V 11GGZ5V 11GGZ10V 11GGZ25V	172 148 174 165 164	
Element Collapse Ra	ating: 150 psid (10.3 bar)	for standard and non-l	bypassing elements
Flow Direc	ction: Outside In		
Element Nor Dimens	minal sions: 11GG: 5" (127 m	ım) O.D. x 11" (305 m	ım) long

T

GeoSeal[®] High-Flow Particulate Filter GHPF

Diesel Fuel and Biodiesel (B100).

For other Distillate Petroleum, Contact Factory.

Pressure	Element Element selections are predicated on the use of 37 SUS (Diesel Fuel and Biodiesel (B100), SAE-24 porting, and a 4 (2.8 bar) bypass valve.					-		
		11GGZ1V			11GC	SZ1V		
		11GGZ3V		11GGZ3V				
	Z- Media®	11GGZ5V	11GGZ5V					
	Wiedła	11GGZ10V		11GGZ10V				
		11GGZ25V	25V 11GGZ25V					
	Flow	gpm	0	20	40	60	80	100
	Flow	(L/min)	0	50	150	2	50	380

Shown above are the elements most commonly used in this housing.

	$\Delta \mathbf{P}_{element}$
	$\Delta P_{\text{\tiny element}}$ = flow x element ΔP factor x viscosity factor
	El. △P factors @ 37 SUS (3 cSt):
	11GGZ1V 0.07 11GGZ3V 0.05
	11GGZ5V 0.05 11GGZ10V 0.05
_	11GGZ25V 0.04
∆P (bar)	If working in units of bars & L/min, divide above factor by 54.9.
DP(Viscosity factor: Divide viscosity by 37 SUS (3 cSt).
7	C/F = Contact factory.

sp gr = specific gravity Sizing of elements should be based on element flow information provided in the Element Selection chart above.

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + \triangle \mathbf{P}_{\text{element}}$

Exercise: Determine △P at 80 gpm (303 L/min) for GHPF11GGZ3VS24D5R using 37 SUS (3 cSt) fluid.

Solution:

 $\Delta P_{\text{housing}} = 6.0 \text{ psi} [0.41 \text{ bar}]$ $\triangle P_{element} = 80 \times 0.05 \times (37 \div 37) = 4.0 \text{ psi}$ or = [303 x (0.05÷54.9) x (3÷3) = 0.28 bar] $\Delta \boldsymbol{P}_{_{\text{total}}}$ = 6.0 + 4.0 = 10.0 psi or = [0.41 + 0.28 = 0.69 bar]

Compatibility	
	BDA
Element Selection	GHPF
Based on Flow Rate	GHCF
	QCF
	BDS
	BDS2
	BDS3
	BDS4
Pressure Drop	LVH-F
Informatic Based on	nvh-c
Flow Rate and Viscosity	BDFC
	BDFP
	BDC
	HDP

Fluid

GeoSeal® High-Flow Particulate Filter GHPF

Filter Model Number Selection	GHPF - - - - Example: NOTE: One option per box			$\begin{array}{c c} BOX 8 & BOX 9 & BOX 10 \\ \hline \\ BOX 8 & BOX 9 & BOX 10 \\ \hline \\ D5 & B & BOX 9 & BOX 10 \\ \hline \end{array} =$	GHPF11GGZ3-
Highlighted product eligible for QuickDelivery					S24D5
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
	Filter Series	Element Length & Series	Element Media	Micron Rating	Element Seal Material
	GHPF	11GG	Z = Excellement [®] Z-Media [®] (synthetic)	1 = (1 µm, Z media)	V = Viton®
	GHPF			3 = (3 µm, Z media)	·
				5 = (5 µm, Z media)	
				10 = (10 µm, Z media)	

25 = (25 µm, Z media)

BOX 6		BOX 7	BOX 8	
	Bypass Setting	Inlet Port	Dirt Alarm [®] Options	
	Omit = 40 psid	S24 = SAE-24	Visual	D5 = Visual pop-up w/manual reset
	P24 = 1.5" NPTF			

BOX 9	BOX 10	
Indicator Orientation	Options	
R = Right Side	Omit = None	
L = Left Side	U = Downstream Test Point	

NOTES:

Box 2.

Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5.

Box 9. As viewed in the direction of the fluid flow from inlet to outlet.

GeoSeal[®] High-Flow Coalescing Filter **GHCF**

Applications

BULK FUEL UNLOADING

KIDNEY LOOP / RECIRCULATION

Features and Benefits

- Versatile diesel fuel coalescing filter suitable for both pressure and suction side applications, including:
 - Large engine primary fuel filtration
 - Bulk fuel dispensing
 - Transfer filtration
 - Tank polishing
- Uses patented GeoSeal[®] elements
- All-aluminum filter housing is fully compatible with diesel and biodiesel blends
- Minimal clearance needed for element service, ideal for enclosure installations
- Cartridge style element improves performance and reduces waste compared to spin-on solutions
- A compact design with reduced dimensions compared to similar cartridge filter and spin-on solutions on the market

Model No. of filter in photograph is: GHCFCG5VS24D5R

Flow Rating:	For Pressure Installations - Up to 25 gpm (95 L/min) For Suction Installations - Up to 900 gph (Up to 3410 L/hr [57 L/min])
Max. Operating Pressure:	150 psi (10.3 bar)
Min. Yield:	1189 psi (82 bar)
Temp. Range:	32°F to 225°F (0°C to 107°C) Standard; -20°F to 225°F (-29°C to 107°C) Heater Option
Bypass Setting:	For Pressure Installations - 40 psi (2.8 bar) For Suction Installations - Blocked Bypass
Element Case:	Cast Aluminum, Anodized Aluminum, Anodized Cast Aluminum, Anodized
Weight of GHCF:	19.45 lbs. (8.82 kg)
Element Change Clearance:	4.5" (114 mm)

Markets

INDUSTRIAL

POWFR GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

RAILROAD

AGRICULTURE

	25 gpm 95 L/min	ICF
	for pressure installation	ns BDF
	15 gpm ^(900 gph) 3410 L/hr	BDA
	(57 L/min) for suction installation	GHPF
	150 psi <i>10.3 bar</i>	GHCF
		QCF
		BDS
		BDS2
		BDS3
		BDS4
		LVH-F
		LVH-C
		BDFC
	Filter Housing	BDFP
	Specificat	onsc
		HDP
		HDPD
		BCC

GHCF GeoSeal[®] High-Flow Coalescing Filter

Filter Element Selection Coalescing Element Performance Information Elements Sold Separately Metric dimensions in ().

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Coalescing Element	Performance	
	Recommended Flow	Single Pass Water Removal Efficiency
C125GZ5V	25 gpm	> 95%

Flow Direction: Inside Out

Element Nominal Dimensions: 5" (127 mm) O.D. x 12" (305 mm) long

Element Collapse Rating: 150 psid (10.3 bar) for standard and non-bypassing elements *NOTE: Efficiency based on ULSD15 with 15-19 mN/m IFT (interfacial tension) and 2500 ppm water injection. Discharge water concentration of <200 ppm undissolved water.

Fluid Compatibility

Ultra-Low Sulfur Diesel (ULSD15) Low Sulfur Diesel (LSD500) Biodiesel Blends of Up to 20% (B20) Synthetic (GTL) and Renewable Diesel Fuel (HVO) Other Light Distillate Petroleum with a Flash Point of >125°F (52°C)

For other fluids, contact factory.

GeoSeal[®] High-Flow Coalescing Filter GHCF

Highlighted product eligible for

GHCF GeoSeal[®] High-Flow Coalescing Filter

Filter Model Number Selection	How to Build a Valid Model N BOX 1 BOX 2 BOX 3 BOX 4 GHCF	BOX 5 BOX 6 BOX 7 BOX 8 BOX 5 BOX 6 BOX 7 BOX 8 BOX 5 BOX 6 BOX 7 BOX 8 S24 D5 R -	HCF: = GHCFCG5VS24D5R	
Highlighted product eligible for QuickDelivery				
	BOX 1 BOX 2 Filter Coalescing Filtra Series	BOX 3 Element Seal Material	BOX 4 BOX 5 Bypass Setting Port	
	GHCF CG5 = C125GZ5V Coales		Omit = 40 psidS24 = SAE-24X = Blocked BypassP24 = 1.5" N	
	BOX 6 Dirt Alarm [®] Options D5 = Visual pop-up w/manual rese Omit = Blocked Indicator Ports (both			
	BOX 7	BOX		
	Indicator Orientation R = Right Side L = Left Side	Optio Omit = Sump Sight Glass (s UU = Upstream & Downs	tandard) tream Test Point	
	Omit = None (Blocked Indicator Ports)	T = WIF Sensor Only (-A I = WIF Sensor w/ Indic H = Sump Heat (74W) S5 = 5 gal. Water Collect S20 = 20 gal. Water Colle AWD5 = Auto Water Drain w AWD20 = Auto Water Drain w	ator Lamp tion Tank ction Tank v/ 5 gal. Collection Tank	
NOTES:		*Contact factory for other options builder	not listed in the model code	
Box 4. A blocked bypass requires the user to ensure a pressure relief is integrated into the system to prevent over- pressuring the filter housings when used in pressure				

in pressure installations. Box 7. As viewed in the direction of the fluid flow from

Box 8. Test point adapter replaces the blanking plug installed opposite the element indicator.

inlet to outlet.

Bulk Diesel Fuel Coalescing Filter *Coalescing Elements Patent-Pending

Applications

BULK FUEL

PROTECTION FOR HIGH-FLOW FUEL

INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

Application Introduction:

The Reason for Better Bulk Fuel Filtration

Advances in diesel engine fuel injection systems have been instrumental in complying with future emission standards. Higher pressure fuel injectors produce a finer mist of fuel, which burns cleaner. Common rail injection systems run at higher pressures and allow more injections per combustion cycle improving fuel economy, engine performance with lower noise. Higher pressure fuel injector systems have tighter tolerances and require the highest efficiency, single-pass particulate and water removal to minimize wear related failures.

Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuels tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- Complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown in application above 32°F (0°C)

Model no. of filter in photograph is: QCFC5VS24VM

70 gpm 265 L/min BDF 100 psi 7 bar QCF

Markets

INDUSTRIAL

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

D

QCF Bulk Diesel Fuel Coalescing Filter

Filter Housing Specifications

Flow Rating:	Up to 70 gpm (265 L/min) for ULSD15
Inlet/Outlet Connection:	-24 (ORB) SAE J1926
Drain Connection Upper:	1/4" NPT Ball Valve
Drain Connection Lower:	1/4" NPT Ball Valve
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge
Rated Fatigue Pressure:	Contact Factory
Temperature range:	-20°F to 165°F (-29°C to 74°C) Standard 32°F to 165°F (0°C to 74°C) with optional sight gauge
Bypass Indication:	25 psi (1.7 bar) (Lower indication options available)
Bypass Valve Cracking:	30 psi (2 bar)
Materials of Construction:	Porting Base: Anodized Aluminum Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard) Cap: Nickel Coated Ductile Iron
Weight:	155 Lbs. (77 kg)
Element Change Clearance:	33.8" (858 mm)

NOTES:

Element is sold with housing

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Fuel Coalescing Filter

CF Bulk Diesel Fuel Coalescing Filter

Bulk Diesel Fuel Skid BD *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

UNLOADING

INJECTION SYSTEMS

RECIRCULATION

70 gpm 265 L/min BDF 100 psi 7 bar BDS

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for high flow or highly contaminated fluid applications
- Routine element change is only needed on Pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest singlepass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

INDUSTRIAL

GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

MINING TECHNOLOGY

0

RAILROAD

Model no. of filter in photograph is: BDS39QPMLZ3VVM

Bulk Diesel Fuel Skid

Filter Housing Specifications

Flow Rating:	Up to 70 gpm (265 L/min) for ULSD15		
Inlet/Outlet Connection:	-24 (ORB) SAE J1926		
Drain Connection Upper:	1/4" NPT Ball Valve		
Drain Connection Lower:	1/4" NPT Ball Valve		
Max. Operating Pressure:	100 psi (7 bar)		
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge		
	Contact factory for yield pressure rating	with sight gauge	
Rated Fatigue Pressure:	Contact Factory		
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option		
	32°F to 165°F (0°C to 74°C) standard or AWD option		
Bypass Indication: (Lower indication options available)	Particulate Filter Particulate: 15 pci (1 02 har)	<u>Coalescing Filter</u> Coalescing: 25 psi (1.7 bar)	
	Particulate: 15 psi (1.03 bar)		
Bypass Valve Cracking:	<u>Particulate Filter</u> Particulate: 20 psi (1.37 bar)	<u>Coalescing Filter</u> Coalescing: 30 psi (2 bar)	
Materials of Construction:	Particulate Filter Porting Base: Anodized Aluminum	Coalescing Filter Porting Base: Anodized Aluminum	
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	
	Cap: Plated Steel	Cap: Plated Steel	
Weight:	441 Lbs. (200 kg)		
Element Change Clearance:	33.8″ (858 mm)		

NOTES:

Elements are sold with the housing

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

BDS

Bulk Diesel Fuel Skid

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			Element ICF Particulate		
Particulate Elements	DHC	β _x (c) ≥ 200	β _x (c) ≥ 1000	– Performance ^{BDF}		
39QPMLZ1V	1485 grams	<4.0	4.2	Information		
39QPMLZ3V	1525 grams	<4.0	4.8	BDA		
Coalescing Element	Pressure Side Coalescing Max Flow Single Pass Water Removal Efficiency			Element GHPF Coalescing		
C396Z5V	70 gpn		≥ 99.5%	Performance GHCF		
Note: Based on ULSD15 wi	ith 27 Dynes/cm surface ter			Information Elements Sold with Housing		
Particulate Ele Flow Dir Element Nominal Dime Coalescing Ele	Highlighted product eligible for					
Flow Dir	ection: Inside Out nsions: 6.4" (163 mm) O.	D. x 39.4″ (1001 mm	n) long	QuickDelivery BDS2 BDS3		
$\Delta P_{housing}$		$\Delta P_{element}$		BDS4 Pressure		
BDS $\Delta P_{\text{housing}}$ for fluids with s	sp gr= 0.86	$\Delta P_{element} = -$	flow x element ΔP factor x viscosity factor	Drop		
-	Flow L/min	El. ∆P fact	ors @ 37 SUS (3 cSt).	Drop Information _{/H-C}		
(50) (100)	(150) (200) (250)	C396Z5V		Based on		
	(0.6	59QPIVILZ		Flow Rate BDFC and		
		39QPMLZ		Viscosity		
		L If working in Viscosity fac	units of bars & L/min, divide above factor by 54.9. tor: Divide viscosity by 37 SUS (3 cSt).	BDC		
	30 40 50 60 70			HDP		
	Flow gpm			HDPD		
-p gp g,		$\Delta P_{filter} = \Delta$	$\Delta P_{\text{housing}} + \Delta P_{\text{element}}$	ВСС		
Notes		$\Delta P_{\text{element (C3)}}$	E Determine ΔP at 70 gpm (265 L/min) for PMLZ3VVM 10 psi = [0.69 bar] $_{QPML}$ = 70 x 0.01 = 0.7 psi [.05 bar] $_{960}$ = 70 x 0.17 = 11.9 psi [.82 bar] 0 + 0.7 + 11.9 = 22.6 psi [1.56 bar]			

Bulk Diesel Fuel Skid

No. 2 fuel oil and heating oil

Highlighted

Bulk Diesel Multi-Skid *Coalescing Elements Patent-Pending

Applications

BULK FUEL UNLOADING

INJECTION SYSTEMS

BULK TANK KIDNEY LOOP / RECIRCULATION

BD 70-140 gpm 248-530 L/min BDF 100 psi

7 bar

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Model no. of filter in photograph is: BDS239QPMLZ3VVM

Markets

INDUSTRIAL

GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

0

RAILROAD

AGRICULTURE

BDS2 Bulk Diesel Multi-Skid

Filter Housing Specifications

Flow Rating:	Up to 140 gpm (530 L/min) for ULSD15				
Inlet/Outlet Connection:	-32 (ORB) SAE J1926				
Drain Connection Upper:	1/4" NPT Ball Valve				
Drain Connection Lower:	1/4" NPT Ball Valve				
Max. Operating Pressure:	100 psi (7 bar)				
Min. Yield Pressure:					
	Contact factory for yield pressure rating with sight gauge				
Rated Fatigue Pressure:	Contact Factory				
Temperature range:	-20°F to 165° F (-29°C to 74°C) sumpleater option				
Bypass Indication:	32°F to 165°F (0°C to 74°C) standard or AWD option Particulate Filter Coalescing Filter				
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)			
Bypass Valve Cracking:	Particulate Filter	Coalescing Filter			
bypass valve cracking.	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)			
Materials of Construction:	Particulate Filter	Coalescing Filter			
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum			
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)			
	Cap: Plated Steel	Cap: Plated Steel			
Weight:	596 Lbs. (270 kg)				
Element Change Clearance:	33.8" (858 mm)				
NOTES:		42.00			
Element are sold with the housing					
Metric dimensions in (). Dimensions shown are inches [millimeters] f	ior general information and overall envelope size	e only			

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS2

		Filtration Ratio per ISO 16889		
Particulate Elements	DHC	Using APC calibrat	ed per ISO 11171 $\boldsymbol{\beta}_{x}(\mathbf{c}) \geq 1000$	Element Particula
39QPMLZ1V	1485 grams	$\frac{\boldsymbol{\beta}_{x}(c) \ge 200}{<4.0}$	4.2	Perform
39QPMLZ3V	1525 grams	<4.0	4.8	Informat
Coalescing Element		Pressure Side Coale	escing	Element
	Max	k Flow Sin	igle Pass Water Removal Efficiency	Coalescin
C396Z5V	70	gpm	≥ 99.5%	Performa
te: sed on ULSD15 with 27 Dyn	nes/cm surface tension	and 0.25% (2500 ppm) water i	njection	Elements Solo
Particulate Eleme	ent			with Housing
Flow Direction	on: Outside In			
Element Nominal Dimensio).D. x 37.80" (960 mm) long		Highlighted product eligibl
Flow Direction	on: Inside Out			QuickDelive
Element Nominal Dimensio	ns: 6.4" (163 mm) C).D. x 39.4" (1001 mm) long		
)		٨Þ		Pressure
D housing	r_ 0.86	$\Delta P_{element}$	ment ΔP factor x viscosity factor	Drop
DS $\Delta P_{\text{housing}}$ for fluids with sp g		$\Delta r_{element} = 1000 \times 610$ El. ΔP factors @ 37		Informat
FIOV (56) (189)	v L/min (340) (492)	C396Z5V = .17	303 (3 (3)).	Based or
		39QPMLZ1V = .01		Flow Rat
		.75) 39QPMLZ3V = .01		and
		.48) O	& L/min, divide above factor by 54.9.	Viscosity
Line and the second sec		Viscosity factor: Divide v	viscosity by 37 SUS (3 cSt).	
4				
2		.20)		
	80 100 120 140			
	v gpm			
gr = specific gravity				
lotes		$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + A$	∆P _{element}	
			ine ΔP at 70 gpm (265 L/min) for	
		BDS239QPMLZ3VV	/M	
		Solution:		
		$\Delta P_{housing} = 3.0 \text{ psi} =$	[0.21 bar]	
		$\Delta P_{\text{element (39QPML)}} = 70$	x 0.01 = 0.7 psi [.05 bar]	
		$\Delta P_{\text{element (C396)}} = 70 \text{ x}$	0.17 = 11.9 psi [.82 bar]	
		$\Delta P_{total} = 3.0 + 0.7 +$	11.9 = 15.6 psi [1.07 bar]	

Bulk Diesel Multi-Skid

140-210 gpm^{ICF} 530-795 L/min BDF

Applications

BULK FUEL UNLOADING

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP[®]) is standard for all coalescing elements

Model no. of filter in photograph is: BDS339QPMLZ3VVM

100 psi 7 bar BDS3

Markets

INDUSTRIAL

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

0

RAILROAD

AGRICULTURE

BDS3 Bulk Diesel Multi-Skid

Filter Housing Specifications

Flow Rating:	Up to 140 gpm to 210 gpm (530 to 795 L/min) for ULSD15			
Inlet/Outlet Connection:	-32 (ORB) SAE J1926			
Drain Connection Upper:	1/4" NPT Ball Valve			
Drain Connection Lower:	1/4" NPT Ball Valve			
Max. Operating Pressure:	100 psi (7 bar)			
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge Contact factory for yield pressure rating with sight gauge			
Rated Fatigue Pressure:	Contact Factory			
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option 32°F to 165°F (0°C to 74°C) standard or AWD option			
Bypass Indication: (Lower indication options available)		<u>Coalescing Filter</u> Coalescing: 25 psi (1.7 bar)		
Bypass Valve Cracking:	<u>Particulate Filter</u> Particulate: 20 psi (1.37 bar)	<u>Coalescing Filter</u> Coalescing: 30 psi (2 bar)		
Materials of Construction:	Particulate Filter Porting Base: Anodized Aluminum	Coalescing Filter Porting Base: Anodized Aluminum		
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)		
	Cap: Plated Steel	Cap: Plated Steel		
Weight:	596 Lbs. (270 kg)			
Element Change Clearance:	33.8" (858 mm)			

NOTES:

Elements are sold with the housing

•

OUTLET PORT: _2-1/2-12UN-2B SAE STRAIGHT THD. PORT (SAE-32)

Dimensions shown are inches for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS3

		Element ICF		
Particulate Elements	DHC	β _x (c) ≥ 200	C calibrated per ISO 11171 $\beta_{v}(c) \ge 1000$	Particulate
39QPMLZ1V	1485 grams	<4.0	4.2	Performance
39QPMLZ3V	1525 grams	<4.0	4.8	Information _{BDA}
Contraction Element			- Carlos las	Element GHPF
Coalescing Element	Ma	Pressure Sid	Single Pass Water Removal Efficiency	Coalescing
C396Z5V) gpm	≥ 99.5%	Performance GHCF
		ension and 0.25% (2500	ppm) water injection	Information Elements Sold QCF with Housing
Flow Direction	Particulate Element Flow Direction: Outside In Element Nominal Dimensions: 6.0" (150 mm) O.D. x 37.80" (960 mm) long			
Coalescing Eleme Flow Directic Element Nominal Dimensior	on: Inside Out	D.D. x 39.4" (1001 mm)	ong	product eligible for QuickDelivery BDS3
$\Delta P_{housing}$		$\Delta P_{element}$		Pressure BDS4
BDS $\Delta P_{housing}$ for fluids with sp gr	= 0.86		w x element ΔP factor x viscosity factor	Drop
Note: Contact Factory for delt	taP housing data		s @ 37 SUS (3 cSt).	Information
		C396Z5V =		Based on Flow Rate
		39QPMLZ1		and
			ts of bars & L/min, divide above factor by 54.9.	Viscosity
			: Divide viscosity by 37 SUS (3 cSt).	BDFP
			. Divide viscosity by 57 505 (5 cst).	
				BDC
				HDP
				HDPD
		$\Delta P_{\text{filter}} = \Delta P_{\text{h}}$	$\Delta P_{element}$	ВСС
Notes		Exercise: D BDS239QPN	Determine ΔP at 70 gpm (265 L/min) for /ILZ3VVM	
		Solution:		
		$\Delta P_{\text{housing}} = 3.$	0 psi = [0.21 bar]	
		ΔP _{element (39QPM}	_{L)} = 70 x 0.01 = 0.7 psi [.05 bar]	
		ΔP _{element (C396)}	= 70 x 0.17 = 11.9 psi [.82 bar]	
		$\Delta P_{total} = 3.0 +$	0.7 + 11.9 = 15.6 psi [1.07 bar]	
		I		

Bulk Diesel Multi-Skid

Part Number Selection

Highlighted product eligible for **QuickDelivery**

Bulk Diesel Multi-Skid

210-280 gpm^{ICF}

Applications

FLEET FILL / BULK FUEL TRANSFER

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP RECIRCULATION

795-1060 L/min DF 100 psi 7 bar

BDS4

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

MARINE

0

MINING

TECHNOLOGY

RAILROAD

FLEET

AGRICULTURE

SCHROEDER INDUSTRIES | FUEL FILTRATION 59

Model no. of filter in photograph is: BDS439QPMLZ3VVM

BDS4 Bulk Diesel Multi-Skid

Flow Rating:	From 210 gpm to 280 gpm (795 to 106	50 L/min) for ULSD15			
Inlet/Outlet Connection:	-32 (ORB) SAE J1926				
Drain Connection Upper:	1/4" NPT Ball Valve				
Drain Connection Lower:	1/4" NPT Ball Valve				
Max. Operating Pressure:	100 psi (7 bar)				
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge				
	Contact factory for yield pressure rating with sight gauge				
Rated Fatigue Pressure:	Contact Factory				
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option				
	32°F to 165°F (0°C to 74°C) standard or AWD option				
Bypass Indication:	Particulate Filter	Coalescing Filter			
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)			
Bypass Valve Cracking:	Particulate Filter	Coalescing Filter			
	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)			
Materials of Construction:	Particulate Filter	Coalescing Filter			
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum			
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)			
	Cap: Plated Steel	Cap: Plated Steel			
Weight:	904 Lbs. (410 kg)				
Element Change Clearance:	33.8" (858 mm)				

NOTES:

Elements are sold with the housing

4 MOUNTING_ HOLES, Ø5/8"

Metric dimensions in (). Dimensions shown are inches for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS4

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171				
Particulate Elements	Particulate Elements DHC β_x		$\boldsymbol{\beta}_{x}$ (c) \geq 1000	Particulate	
39QPMLZ1V	1485 grams	<4.0	4.2	Performance	
39QPMLZ3V	1525 grams	<4.0	4.8	Information _{BDA}	
Coalescing Element		Pressure Sid	e Coalescing	Element GHPF	
	Ma	ax Flow	Coalescing		
C396Z5V	70) gpm	Performance GHCF		
		tension and 0.25% (2500	ppm) water injection	Information Elements Sold QCF with Housing	
Particulate Eleme Flow Directic Element Nominal Dimensior	on: Outside In	O.D. x 37.80" (960 mm)	long	Highlighted	
Coalescing Eleme Flow Directic Element Nominal Dimensior	on: Inside Out	O.D. x 39.4" (1001 mm)	long	product eligible for QuickDelivery BDS2	
				BDS3	
$\Delta P_{housing}$		$\Delta P_{element}$		Pressure BDS4	
BDS $\Delta P_{\text{housing}}$ for fluids with sp gr	r= 0.86		w x element ΔP factor x viscosity factor		
Note: Contact Factory for del		El. ∆P factor	s @ 37 SUS (3 cSt).	Information	
,	5	C396Z5V =		Based on LVH-C	
		39QPMLZ1		Flow Rate	
		39QPMLZ3		and BDFC Viscosity	
		If working in un	its of bars & L/min, divide above factor by 54.9.	BDFP	
		Viscosity facto	r: Divide viscosity by 37 SUS (3 cSt).	DUIT	
				BDC	
				HDP	
				nur	
				HDPD	
Notes		$\Delta P_{\text{filter}} = \Delta P_{\text{H}}$	ousing + $\Delta P_{element}$	всс	
		Exercise: I BDS239QPI	Determine ∆P at 70 gpm (265 L/min) † MLZ3VVM	for	
		Solution:			
			0 psi = [0.21 bar]		
		$\Delta P_{element (39QPM)}$	_{IL)} = 70 x 0.01 = 0.7 psi [.05 bar]		
		ΔP _{element (C396)}	= 70 x 0.17 = 11.9 psi [.82 bar]		
		$\Delta P_{total} = 3.0 +$	- 0.7 + 11.9 = 15.6 psi [1.07 bar]		
L		I			

Bulk Diesel Multi-Skid

Element Part Number Selection

Highlighted product eligible for **OuickDelivery**

High Flow | Low Viscosity Housing Filter *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

K FUEL DADING

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- Easy to adapt to filter housings for the removal of the fine particles in diesel
- The Low Viscosity-Housing Filter LVH-F is mainly used to filter low-viscosity fluids. It is especially suitable for applications with large amounts of dirt that need to be removed in just a single pass
- The Optimicron[®] filter elements used here ensure that both the required cleanliness and a long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Model no. of filter in photograph is: LVHF340NBRFZ

799-3600 L/min BDF 150 psi 10 bar Standard LVH-F

BC

Markets

BULK FUEL FILTRATION

MARINE

MINING TECHNOLOGY

AGRICULTURE

GENERATION

SCHROEDER INDUSTRIES | FUEL FILTRATION 63

211- 951 gpm

LVHF High Flow | Low Viscosity Housing Filter

High Flow | Low Viscosity Housing Filter

Housing

Filter elements must be ordered separately and installed before

initial operation

on-site

The lower curve applies to diesel at 20°C (the upper curve is for mineral oil with viscosity to 30 cSt for comparison).

Designation	Part No.	
N42ON-DF003-FA40F	3965085	
N42ON-DF005-FA40F	3916691	
N42ON-DF010-FA40F	4055947	
	N42ON-DF003-FA40F N42ON-DF005-FA40F	

* Contact Factory for More Details

LVHF High Flow | Low Viscosity Housing Filter

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder LVH-F Supplied with Element:				
	BOX 1 BOX Filter Series LVH	ons Filter Si	ze Filter Eleme element 40 = elements elements elements	nt Length Housing Material	
	BOX 6 Mounting V = Vertical H = Horizontal	BOX 7 Pressure Range B = 150 psi (10 bar) C = 232 psi (16 bar)	BOX 8 Hydraulic Connection A2 = 2" ANSI 150# SORF A3 = 3" ANSI 150# SORF A4 = 4" ANSI 150# SORF A6 = 6" ANSI 150# SORF A8 = 8" ANSI 150# SORF L = DIN DN 50 R = DIN DN 100 V = DIN DN 150 W = DIN DN 200 Y = DIN DN 300	BOX 9 Sealing F = Viton®	
	C12 = Differential pre D17 = Differential pre D18 = Differential pre D32 = Differential pre (PVL2GW.0/ V- D33 = Differential pre (PVL2GW.0/ 11 Z = Without cloggi	ssure indicator, visual/electrical 1-16) ng indicator	(230V) (240V)	BOX 11 Ible Certification IE Certification initial operation on site	
Fluid Compatibility	Fuel Oils ULSD15, low sulfur d Biodiesel blends Synthetic diesel and B No. 2 fuel oil and hea	iesel and high sulfur die plends			

High Flow | Low Viscosity Housing Coalescer *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

10 bar Standard

LVH-C

Features and Benefits

- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- The Low Viscosity-Housing Coalescer LVH-C is mainly used for dewatering of diesel, making it especially suitable for applications with large amounts of water that need to be removed in just a single pass
- The Optimicron[®] filter elements used ensure that both the required cleanliness and long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to the ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Model no. of filter in photograph is: LVHCD440NVBTFZ

Markets

BULK FUEL FILTRATION

TECHNOLOGY

GENERATION

LVHC High Flow | Low Viscosity Housing Coalescer

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

High Flow | Low Viscosity Housing Coalescer LVHC

	25' (c60 ± 5)	<image/>		Dimensions GHPF LVH-C-D-9-40 GHCF BDF BDFA BDFA BDA QCF BDS BDS2 BDS3 BDS4 LVH-C
				LVH-C
Filter Size (Model)	Maximum Flow Ra	Number of Coale Elements 4 pcs.	scing Number of Separator Elements 3 pcs.	Filter BDFP Calculation BDFC
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	- Calculation _{BDFC}
LVH-CD-4 40	211 gpm	Elements 4 pcs.	Elements 3 pcs.	Calculation _{BDFC}
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	- Calculation _{BDFC}
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	Calculation _{BDFC}
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	
LVH-CD-4 40 LVH-CD-6 40	211 gpm 317 gpm	Elements 4 pcs. 6 pcs.	Elements 3 pcs. 4 pcs.	HDPD Filter Element
LVH-CD-4 40 LVH-CD-6 40 LVH-CD-9 40	211 gpm 317 gpm 476 gpm 30" N	Elements 4 pcs. 6 pcs. 9 pcs.	Elements 3 pcs. 4 pcs. 6 pcs.	

LVHC High Flow | Low Viscosity Housing Coalescer

	•							
Filter	How to Build a \	/alid Model Numb	er for a Sch	roeder LVH	-C Supplied with	Element:		
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11							
Number								
Selection	Example: NOTE: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11							
Selection	LVH - CD - 4 - 40 - E - V - B - V - F - D32 - ZA = LVHCD440EVBVFD32ZA							
	DOV 1		DOX 2					
	BOX 1	BOX 2	BOX 3	mber of	BOX 4	BOX 5		
	Filter Series	Functions	Filter Size & Nu Elements per H		Filter Element Length	Housing Material		
	LVH CD =	Coalescing, Diesel Fuel	4 = 4 coalesci 3 separato	ng & or elements	40 = 40"	E = Stainless Steel N = Carbon Steel		
			6 = 6 coalesci	na &		N = Carbon steer		
				or elements				
			9 = 9 coalesci					
			6 separato	or elements				
	BOX 6	BOX 7		BOX 8	BOX 9			
	Mounting V = Vertical	Pressure Range B = 150 psi (10 bar)		ic Connection	Sealing			
	v = vertical			ANSI 150# SORF ANSI 150# SORF	F = Viton®			
				ANSI 150# SORF				
				ANSI 150# SORF ANSI 150# SORF				
			L = DIN T = DIN					
			V = DIN	DN 150				
			W = DIN Y = DIN					
			For flanges not li	sted, contact factory	y.			
		BOX10			BOX 11			
		Clogging Indicator			ble Certification			
		l pressure indicator, electrical	· · · · //2201/0	ZA = ASM	IE Certification			
		l pressure indicator, visual/elec I pressure indicator, visual/elec						
		pressure indicator, visual/elec						
	(PVL2GW.0)/ V-113)						
	D33 = Differentia (PVL2GW.0	l pressure indicator, visual/elec)/ 111-16)	trical					
	Z = Without cl	ogging indicator						
	NOTES: Filter element	s must be ordered sepa	arately and inst	talled before	initial operation on sit	te		
Fluid	Fuel Oils							
Compatibility		in diacol and black and	r diocol					
companying	 ULSD 15, low suite Biodiesel blends 	ur diesel and high sulfu	i ulesel					
	 Biodleser bierros Synthetic diesel ar 	nd blends						
	 No. 2 fuel oil and 							
•	-	-						