Customizable Tank Solution

Description

A fuel tank is a box, a hydraulic tank solution from Schroeder Industries is a complete internal filtration system with several important functions.

Our hydraulic tank packages are customizable filtration and deaeration solutions, designed uniquely-based on your machine’s individual needs. Whether it be a metal fabricated or plastic roto molded tank, we optimize return lines, tank designs and suction areas to:

- Dissipate heat
- Deaerate the fluid
- Provide convenient control over the settling of components

And by offering customizable hydraulic tank solutions, we are able to look at every detail that goes into the creation of the tank, above the traditional approach when designing just a standard model.

Our methods and procedures allow us to look further in depth at how the available space can best fit a tank, tank pressure contours, flow path, rate of flow, material types, system volume, and various other design approaches to better ensure a high quality product is designed for your unique machinery.

By taking a new approach per every tank order we receive, we are able to design a tank solution that optimizes static pressures, cyclic pressures, random vibrations, cooling and other faults that may be missed when not customizing a tank solution.

Tank Optimization

<table>
<thead>
<tr>
<th>Optimizing Return Line</th>
<th>Optimizing Tank Design</th>
<th>Optimizing Suction Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter add-ons to reduce velocity</td>
<td>Space-saving complete tank systems</td>
<td>Selection of the suction filter</td>
</tr>
<tr>
<td>Selection of return line filters</td>
<td>In-tank devices to reduce velocity</td>
<td>Selection of the suction line connections</td>
</tr>
<tr>
<td>Leak tightness of the return line filters or return line chamber</td>
<td>Separated suction and return line areas</td>
<td>Leak-tightness of the suction filter and suction connection</td>
</tr>
<tr>
<td>Pressurized tank for pump charging</td>
<td>Avoiding high suction under pressure</td>
<td>Avoiding cavitation</td>
</tr>
</tbody>
</table>

Benefits

- Increased thermal conductivity
- Lower oil temperatures
- Less oil deterioration
- Increased oil lubricity
- Minimized cavitation damage
- Lower noise levels
- Increased bulk modulus (decreased compressibility)
Tank Optimization - Simulation

By offering simulation based testing, we are able to truly design a hydraulic tank solution to best fit any available space you are looking to install.

With simulation testing, the data correlates the simulation and experimental results, which shows real world improvements. The simulation then allows for better visualization of reservoir flow and fast interactive design. Our simulations include:

- FEA - Structural Analysis
- CFD One Phase
- Flow Path, Dwell Time, Heat Transfer

Fluid Optimization: De-Aeration

Initial Approach: Study of flow trajectories and residence time using CFD One Phase:

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Baseline Image]</td>
<td>![Optimized Image]</td>
</tr>
</tbody>
</table>

Heat Transfer Optimization

Our tank designs can be optimized for cooling, ensuring your hydraulic oil temperature does not exceed standard operating temperatures.

- **Steel Tank**
 - $Q_{\text{STEEL}} \approx 5000 \text{ W}$
- **Plastic Tank**
 - $Q_{\text{PLASTIC}} \approx 3000 \text{ W}$

Application Success

Schroeder Industries provided a tank package solution for a customer looking to rid their current tank of weld slag migration. The revised clean tank also resolved any warranty issues in the field. **Full reference (L-4381).**