

Section 1: BULK DIESEL FILTRATION

In-Line Bulk Fuel Coalescing Filter

*Coalescing Elements Patent-Pending **Applications**

Dispensing

FLEET FILL / BULK FUEL TRANSFER

HIGH-FLOW FUEL INJECTION SYSTEMS

BULK TANK KIDNEY LOOP / RECIRCULATION

Model no. of filter in photograph is: ICFVS16LEP

Model no. of filter in photograph is: ICFM

Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier III and Tier IV engine components against failures caused by particulate and water transferred from bulk fuel tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- Housing design allows for field upgrade of any available option
- Schroeder Anti-Static Pleat® Media (ASP) is standard for all coalescing elements
- Pressure bypass indicator setting at 36 psi, with bypass valve cracking at 40 psi, allows for early indication before bypass of filter for advanced maintenance notice
- In applications >32°F (0°C) complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Now available as a UL Certified, marine specific, fuel filter (ICFM)

POWER

GENERATION

COMMON RAIL INJECTOR SYSTEMS

MARINE

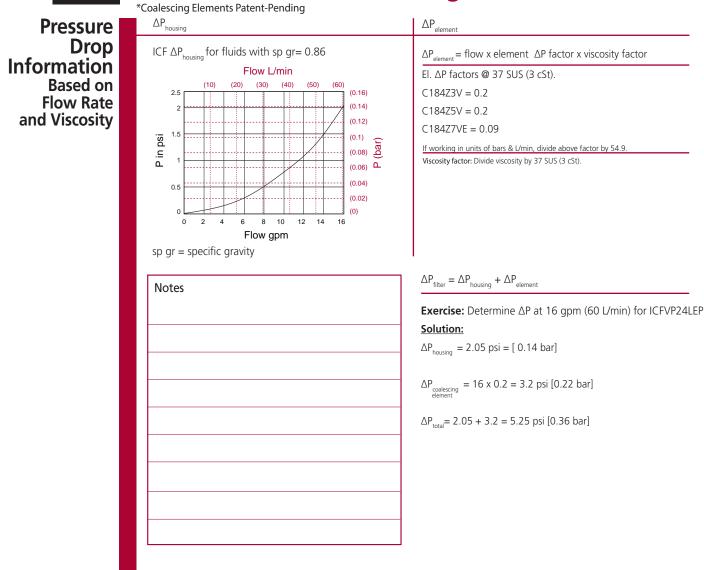
RAILROAD

0

MINING

TECHNOLOGY

AGRICULTURE


FILTRATION

In-Line Bulk Fuel Coalescing Filter ICF

	*Coalescing Elements Patent-Pending	
Flow Rating:	Up to 16 gpm (60 L/min) for ULSD15	Filter ICF
Inlet/Outlet Connection:	1 ½" NPTF Standard, -16 (ORB) SAE J1926 Optional	Housing Specifications
Max. Operating Pressure:	150 psi (10 bar)	Specifications
Min. Yield Pressure:	• •	BDA
	90 psi (6 bar), per NFPA T2.6.1-2005	
	32°F to 165°F (0°C to 74°C) standard and AWD option -20°F to 165°F (-29°C to 74°C) H option	GHPF
	36 psi (2.5 bar) (Lower indication options available)	GHCF
Bypass Valve Cracking:	· · ·	
Element Bowl:	Aluminum - Coating Option see Box 7 Steel - Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	QCF
Filter Housing Weight:	15 lbs (6.8 kg) - Base unit without options or element	BDS
Element Change Clearance:	Access from top (remove cap) - 18" (457.2 mm) Access from below (remove bowl) - 2.5" (63.5 mm)	BDS2
Housing Sump:	32 oz. (0.95 L)	0052
Optional:	External water sump and non-immersion heater (power 120VAC, 235W), Sight glass, bracket, water in fuel sensor w/ or w/out remote mount light and 6' lead	BDS3
Note: For other electrical options, co		BDS4
Element sold separately		LVH-F
		LVH-C
		BDFC
		BDFP
		BDC
		HDP
		HDPD
	Optional Brackets:	BCC
	Element top loading Element bottom loading Option 'B' Option 'R'	
GROUND W		
Ø4.50 [114]		
	4.0 (14) [22]	
	H→→ [rīn]→→ MOUNTING BRACKET HOLE DIMENSIONS Metric dimensions in ().	

In-Line Bulk Fuel Coalescing Filter

Filter Element Selection Coalescing Element Performance Information Elements Sold Separately

Coalescing Element	Pressure Side Coalescing			
	Recommended Flow	Single Pass Water Removal Efficiency		
C184Z5V	16 gpm	≥ 99.5%		
C184Z3V	16 gpm	≥ 99.5%		
C184Z7VE	16 gpm	Contact Factory for Element Data		

Flow Direction: Inside Out

Element Nominal Dimensions: 4.0" (102 mm) O.D. x 18.5" (470 mm) long *Schroeder Anti-Static Pleat Media (ASP®) is standard

*NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.

Highlighted product eligible for

In-Line Fuel Coalescing Filter

INDICATOR, 25 PSID 40 PSID BYPASS SETTING

STANDARD

BLEED PORT

*Coalescing Elements Patent-Pending

CAP AND HEAD OPTIONAL: ANODIZED

OPTIONAL: REINFORCING MOUNTING FLANGE

HOUSING HIGH-PHOS ELECTROLESS NICKEL PLATED AND EPOXY PAINTED

PORTING: 1.5 INCH N.P.T.F OPTIONAL: SAE-16

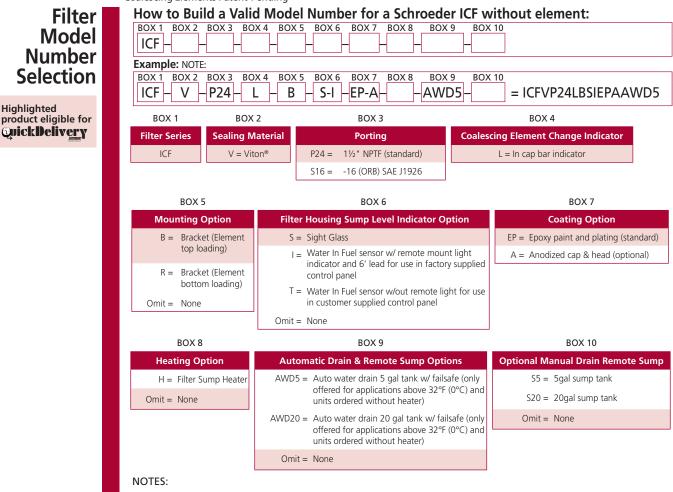
- NOTES: Water in fuel sensor (WIF) supplied w/ or w/out remote mount indicator light to show full filter housing sump
 - T Option = WIF sensor only w/out filter housing sump full indication light or control panel
 - I Option = WIF sensor w/ remote mount filter housing sump full indicator light and NEMA 4X control panel supplied

NOTES: Filter Sump Heater Control Panel dimension: 6.5" W x 5.5" H x 6.5" D (165 W x 140 H x 165 D)

> Automatic Water Drain Control Panel dimension: 10" W x 8" H x 12" D (254 W x 203.20 H x 304.80 D) *For use above $32^{\circ}F$ (0°C) only Electrical cable length (Control Panel to ICF): 4 ft. (1.22m) Hose length for Automatic Water Drain feature (ICF to Tank): 6 ft.(1.83m)

All control panels "NEMA 4X" rated

Metric dimensions in ().


NOTES: Remote Tank dimension: 5 Gallon Tank: 22" W x 9.25" L x 7.125" H (558.80 W x 234.95 L x 180.97 H) 20 Gallon Tank: 15" W x 11" L x 31" H (381 W x 279.40 L x 787.40 H) Power supply for tank high level LED light: 9 VDC (battery included) Supplied w/ 9 VDC terminal for customer wiring provided.

Metric dimensions in ().

In-Line Fuel Coalescing Filter *Coalescing Elements Patent-Pending

For details on how to order the UL Listed ICFM, Contact Factory

Unless automatic drain option is specified, ICF units will come standard with manual drain

Coalescing element sold separately and selected below

If ordering the collection of options (Box 5. B, Box 6. S, and Box 8. H) together, please contact factory Box 2. Viton[®] is a registered trademark of DuPont Dow Elastomers

Box 6 and 7. Only two boxes that allow combination of options (S + I or EP + A)

Box 8. Filter sump heater option only available when ordered w/out automatic water drain (AWD5 or AWD20) Box 9. AWD fail safe is shown on page 25 (ICF)

Element Part NumberPressure Side CoalescingMax FlowSingle Pass Water Removal EfficiencyC184Z5V16 gpm< ≥ 99.5%</td>C184Z3V16 gpmC184Z7VE16 gpm

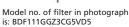
NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.

Flow Direction: Inside Out

Element Nominal Dimensions: 4.0" (102 mm) O.D. x 18.5" (470 mm) long *Schroeder Anti-Static Pleat Media (ASP®) is standard

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil


Element Part Number Selection

Highlighted product eligible for QuickDelivery

Fluid Compatibility

RECIRCULATION

Bulk Diesel Filter

*Coalescing Elements Patent-Pending

Applications

Features and Benefits

which saves time and money

element replacement

media technology

>32°F (0°C)

Easy mounting and element service

Fuel dispensing and transfer filtration solution with choice of

Allows users to achieve or exceed the manufacturer requirements

downstream coalescing filter protection and extended element life Routine element change only needed on particulate pre-filter,

Updated BDF design incorporates GHPF and GHCF filter housings

Particulate filtration available at 1 or 3 microns utilizing synthetic

Housing design allows for field upgrade of any available option

Complete automation is achievable with a water and fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown in application

Z-Media[®] element for better contamination control Patented, three-phase, particulate and fuel/water separation

for a reduced cost, improved function, and increased capacity Patented GeoSeal® element sealing interface ensures quality

Designed with integrated particulate removal pre-filtration for

integral or blocked bypass to suit application

for particulate and water content in diesel fuel

HIGH-FLOW FUEL INJECTION SYSTEMS

BULK TANK KIDNEY LOOP

is: BDF111GGZ3CG5VD5

BDF

150 psi 10 bar

25-50 gpm 95-189 L/min

is: BDF211GGZ3CG5VD5

Markets

POWER GENERATION

MOBILE VEHICLES

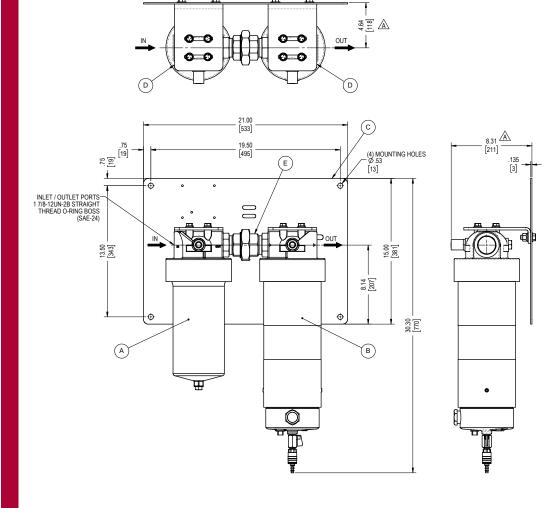
COMMON RAIL INJECTOR SYSTEMS

MARINE

FLEET

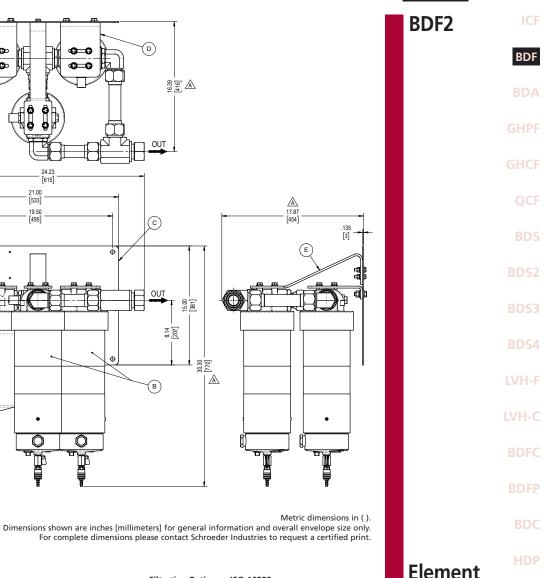
TECHNOLOGY

RAILROAD



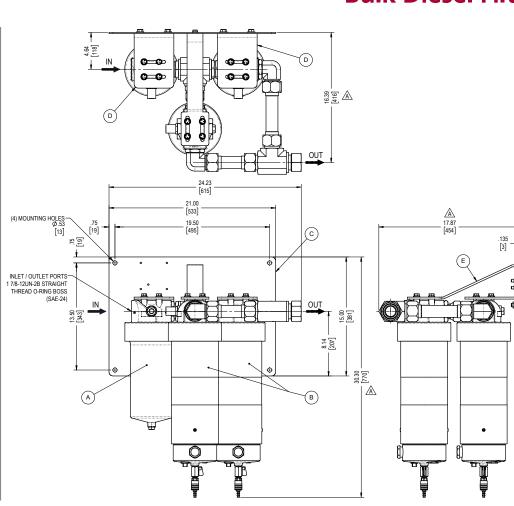
BDF Bulk Diesel Filter

Filter Housing Specifications


Flow Rating:	BDF1: up to 25 gpm (95 L/min)	
	BDF2: up to 50 gpm (189 L/min)	
Inlet/Outlet Connection:	-24 (ORB) SAE J1926	
Max. Operating Pressure:	150 psi (10 bar)	
Temp. Range:	-20°F to 225°F (-29°C to 107°C) w/ optional water sump heater, 32°F to 225°F (0°C to 107°C) without heater, with standard features and AWD options	
Bypass Indication:	<u>Particulate Filter</u> 35 psi (2.4 bar)	<u>Coalescing Filter</u> 35 psi (2.4 bar)
Bypass Valve Cracking:	<u>Particulate Filter</u> 40 psi (2.8 bar)	<u>Coalescing Filter</u> 40 psi (2.8 bar)
Materials of Construction:	Particulate & Coalescing Filter Porting Head: Cast Aluminum, Anodized Element Case: Aluminum, Anodized	Coalescing Filter Only Sump: Cast Aluminum, Anodized
Weight:	BDF1: 46.5 lbs	BDF2: 89 lbs
Element Change Clearance:	<u>Particulate Filter</u> 2" (51 mm)	<u>Coalescing Filter</u> 4.5" (114 mm)
Opt. Water Sump Heater:	120VAC, 1 x 74W (BDF1) / 2 x 74W	(BDF2)
Opt. Visual Electrical Indicator:	120VAC	

BDF1

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.


Bulk Diesel Filter BDF

Element Particulate HDPD Performance Information BCC

Element Water Coalescing Performance Information Particulate and Coalescing Elements Sold with System

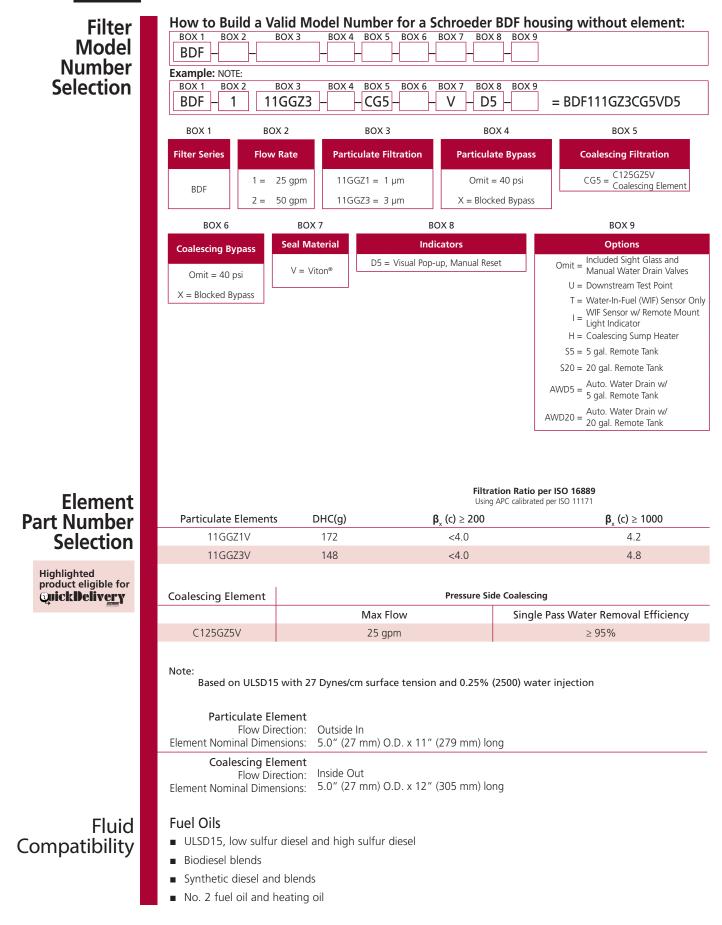
Highlighted product eligible for QuickDelivery

Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171 $\boldsymbol{\beta}_{x}$ (c) ≥ 200 **Particulate Elements** DHC(g) $\beta_{x}(c) \ge 1000$

11GGZ1V	172	<4.0	4.2
11GGZ3V	148	<4.0	4.8

Coalescing Element	Pressure Side Coalescing		
	Max Flow	Single Pass Water Removal Efficiency	
C125GZ5V	25 gpm	≥ 95%	

Note:


Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Particulate Element Flow Direction: Outside In 5.0" (27 mm) O.D. x 11" (279 mm) long Element Nominal Dimensions: **Coalescing Element**

Flow Direction: Inside Out Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

Bulk Diesel Filter

BDF

In-Line Water Absorbing Diesel Fuel Bag Filter

BDA

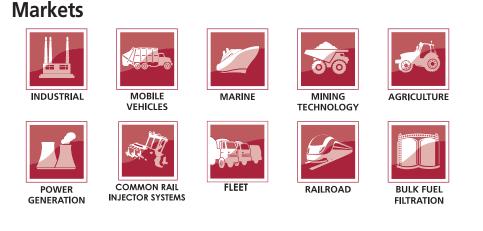
35 or 70 gpm

Applications

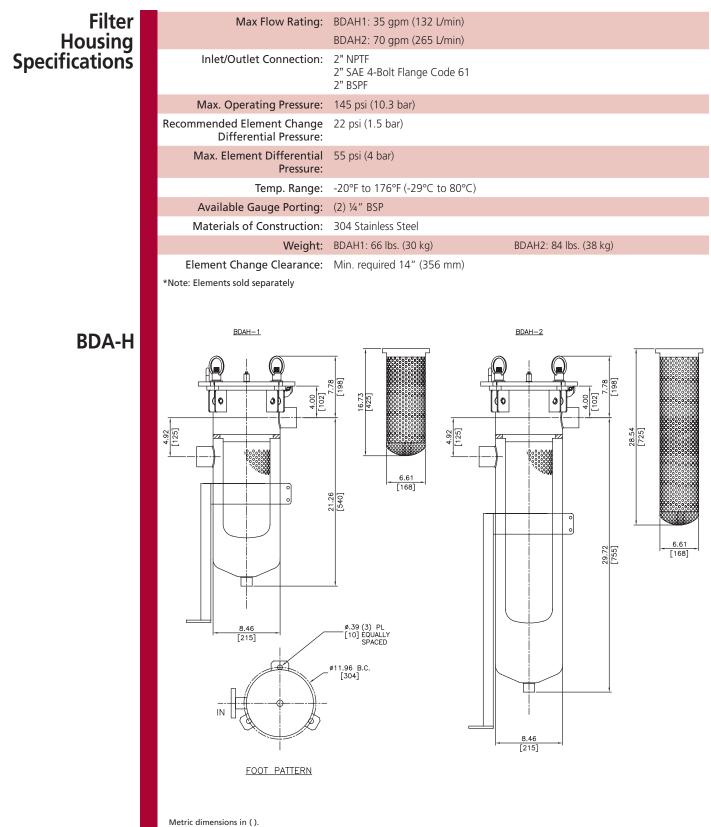
BULK FUEL UNLOADING

Application Introduction:

The BDA provides a high capacity water absorbing solution for diesel fuel in a familiar process filtration housing configuration. The BDA combines the high volume particulate filtration performance of a bag housing element with a high capacity water absorbent media to provide an economic solution for particulate and water removal in diesel fuel systems. The BDA can be used for dispensing or kidney-loop installations. The filter is designed for use with standard diesel fuel as well as bio-based blends.



Model no. of filter in photograph is: BDA-H-2-V-P32


132 or 265 L/min	BDF
145 psi	BDA
10 bar	GHPF
	GHCF
	QCF
	BDS
	BDS2
	BDS3
	BDS4
	LVH-F
	LVH-C
	BDFC
	BDFP
	BDC
	HDP
	HDPD
	BCC

Features and Benefits

- One housing and bag filter provides both high capacity particulate and water removal performance
- A particulate filtration rating of 10 μm is standard
- Housings are high quality stainless steel, CE Marked vessels
- A positive bag seating mechanism helps to minimize the risk of seal bypass
- Fixed legs with height and 360° rotational adjustment allow for various mounting options

BDA In-Line Water Absorbing Diesel Fuel Filter

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

In-Line Water Absorbing Diesel Fuel Filter BDA

BDA In-Line Water Absorbing Diesel Fuel Filter

Filter Model Number Selection	BOX 1 BOX 2 BC BDA	BOX 4	BOX 5 BOX BOX 5 BOX BOX 5 BOX P32 - DPC	6	A housing without element: AH1VP32DPG
		BOX 2 t Configuration = Housing	BOX 3 Bag Element Size 1 = Size 1 2 = Size 2		BOX 4 Housing Seal Material V = Viton®
	BOX 5 Porting P32 = 2" NPTF F32 = 2" SAE 4-Bo B32 = 2" BSPF		Omit = N		essure Gauge
Element Part Number Selection	barately and are lis Bag Housing Size Size 1	ted below Max Flow Rate gpm (L/min) 35 (132)	Micron Rating 10 μm	Bag Element Dimensions 7" (178 mm) O.D. x 17" (432 mm) long	
	FA210P2PW	Size 2	70 (265)	10 μm	7" (178 mm) O.D. x 32" (813 mm) long
Fluid Compatibility	Fuel Oils ULSD15, low sulfur di Biodiesel blends Synthetic diesel and b No. 2 fuel oil and hea	lends	r diesel		

GeoSeal® High-Flow Particulate Filter

Applications

BULK FUEL

UNLOADING

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

- Diesel fuel particulate filter for dispensing, transfer or polishing filtration applications
- Uses patented GeoSeal[®] elements
- All-aluminum filter housing is fully compatible with diesel and biodiesel
- Minimal clearance needed for element service, ideal for enclosure installations
- Cartridge style element improves performance and reduces waste compared to spin-on solutions
- Port to port and mounting pattern dimensions match standard spin-on assembly

Model No. of filter in photograph is: GHPF11GGZ3VS24D5R

Flow Rating:	Up to 100 gpm (380 L/min)
Max. Operating Pressure:	150 psi (10.3 bar)
Min. Yield:	2600 psi (179 bar)
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar)
5	Cast Aluminum, Anodized Aluminum, Anodized
Weight of GHPF:	7.64 lbs. (3.47 kg)
Element Change Clearance:	2" (51 mm)

Markets

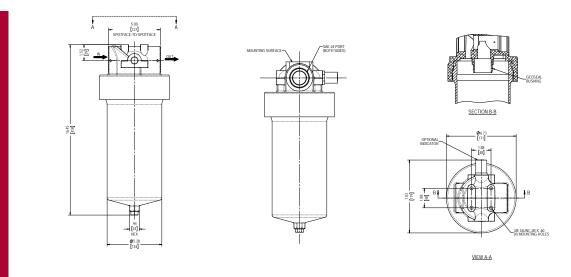
POWER

FLEET

AGRICULTURE

MINING

TECHNOLOGY


RAILROAD

FILTRATION

I	GHPF	
	100 gpm 380 L/min	ICF
		BDF
	150 psi 10.3 bar	BDA
	10.5 Dai	GHPF
		GHCF
		QCF
		BDS
		BDS2
		BDS3
		BDS4
		LVH-F
		LVH-C
		BDFC
	Filter Housing	BDFP
	Housing Specificati	onsc
		HDP
		HDPD
		BCC

GHPF **GeoSeal® High-Flow Particulate Filter**

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information

		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Media Type	Element	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
Traditional Excellement® Z-Media®	11GGZ1V 11GGZ3V 11GGZ5V 11GGZ10V 11GGZ25V	<4.0 4.6 5.9 11.4 15.8	4.5 5.8 7.8 13.2 17.5	

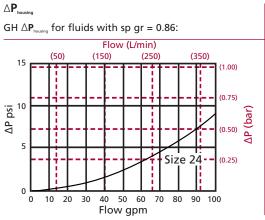
Dirt Holding Capacity

Media Type	Element	DHC (gm)	
Traditional Excellement® Z-Media®	11GGZ1V 11GGZ3V 11GGZ5V 11GGZ10V 11GGZ25V	172 148 174 165 164	
Element Collapse Ra	ating: 150 psid (10.3 bar	r) for standard and non-k	pypassing elements
Flow Direc	ction: Outside In		
Element Nor Dimens	minal sions: 11GG: 5" (127 r	nm) O.D. x 11" (305 m	m) long

T

GeoSeal® High-Flow Particulate Filter GHPF

Compatibility


Fluid

Diesel Fuel and Biodiesel (B100).

For other Distillate Petroleum, Contact Factory.

Pressure	Series	Element Part No.	D	Element selections are predicated on the use of 37 SUS (3 cSt) Diesel Fuel and Biodiesel (B100), SAE-24 porting, and a 40 psi (2.8 bar) bypass valve.				-
		11GGZ1V			11GG	SZ1V		
	Z- Media®	11GGZ3V			11GG	SZ3V		
		11GGZ5V			11GG	SZ5V		
	media	11GGZ10V	11GGZ10V					
		11GGZ25V		11GGZ25V				
	Пон	gpm	0	20	40	60	80	100
Flow		(L/min)	0	50	150	2	50	380

Shown above are the elements most commonly used in this housing.

	$\Delta \mathbf{P}_{\text{element}}$ $\Delta \mathbf{P}_{\text{element}} = \text{flow x element } \Delta \mathbf{P} \text{ factor x viscosity factor}$
ΔP (bar)	El. ΔP factors @ 37 SUS (3 cSt): 11GGZ1V 0.07 11GGZ3V 0.05 11GGZ5V 0.05 11GGZ10V 0.05 11GGZ25V 0.04 If working in units of bars & L/min, divide above factor by 54.9. Viscosity factor: Divide viscosity by 37 SUS (3 cSt). C/F = Contact factory.

sp gr = specific gravity Sizing of elements should be based on element flow information provided in the Element Selection chart above.

Notes		

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + \triangle \mathbf{P}_{\text{element}}$

Exercise: Determine △P at 80 gpm (303 L/min) for GHPF11GGZ3VS24D5R using 37 SUS (3 cSt) fluid.

Solution:

 $\triangle P_{\text{housing}} = 6.0 \text{ psi} [0.41 \text{ bar}]$ $\triangle P_{element} = 80 \times 0.05 \times (37 \div 37) = 4.0 \text{ psi}$ or = [303 x (0.05÷54.9) x (3÷3) = 0.28 bar] $\Delta \boldsymbol{P}_{_{total}}$ = 6.0 + 4.0 = 10.0 psi or

= [0.41 + 0.28 = 0.69 bar]

compatib	DF
	BDA
Element Selection	GHPF
Based on Flow Rate	GHCF
	QCF
	BDS
	BDS2
	BDS3
	BDS4
Pressure	LVH-F
Drop Informatic Based on	on ^{VH-C}
Based on Flow Rate and Viscosity	BDFC
	BDFP
	BDC
	HDP
	HDPD

GHPF GeoSeal[®] High-Flow Particulate Filter

Filter	How to Build a Valid	d Model Number for a Schroe	eder GHPF:	
Model	BOX 1 BOX 2 BOX GHPF	K 3 BOX 4 BOX 5 BOX 6 BOX 7	BOX 8 BOX 9 BOX 10	
Number	Example: NOTE: One option			
Selection	BOX 1 BOX 2 BOX GHPF - 11GG - Z	<u>X3 BOX4 BOX5 BOX6 BOX7</u> <u>X - 3 - V 524</u>	BOX 8 BOX 9 BOX 10	= GHPF11GGZ3-
Highlighted product eligible for QuickDelivery				VS24D5
	BOX 1 BOX 2	BOX 3	BOX 4	BOX 5

BOX 1	BOX 2	BOX 3			BOX 4		BOX 5
Filter Series	Element Length & Series		Element Media		Micron Rating		Element Seal Material
GHPF	11GG	Z = Exce	llement [®] Z-Media ⁽	® (synthetic)	1 = (1 µm, Z media)		V = Viton®
GHFF					3 = (3 µm, Z media)		
					5 = (5 µm, Z media)		
					10 = (10 µm, Z media)		
					25 = (25 µm, Z media)		
BOX 6	В	OX 7		В	OX 8		
Bypass Set	ind	nlet Port		Dirt Alar	m [®] Options		
Omit = 40	psid S24 = S	AE-24	Visual	D5 = Visual	pop-up w/manual reset		
	P24 = 1	.5" NPTF					

BOX 9	BOX 10
Indicator Orientation	Options
R = Right Side	Omit = None
L = Left Side	U = Downstream Test Point

NOTES:

Box 2.

 Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5.

Box 9. As viewed in the direction of the fluid flow from inlet to outlet.

GeoSeal[®] High-Flow Coalescing Filter GHCF

Applications

KIDNEY LOOP / RECIRCULATION

Features and Benefits

- Versatile diesel fuel coalescing filter suitable for both pressure and suction side applications, including:
 - Large engine primary fuel filtration
 - Bulk fuel dispensing
 - Transfer filtration
 - Tank polishing
- Uses patented GeoSeal[®] elements
- All-aluminum filter housing is fully compatible with diesel and biodiesel blends
- Minimal clearance needed for element service, ideal for enclosure installations
- Cartridge style element improves performance and reduces waste compared to spin-on solutions
- A compact design with reduced dimensions compared to similar cartridge filter and spin-on solutions on the market

Model No. of filter in photograph is: GHCFCG5VS24D5R

Flow Rating:	For Pressure Installations - Up to 25 gpm (95 L/min) For Suction Installations - Up to 900 gph (Up to 3410 L/hr [57 L/min])
Max. Operating Pressure:	150 psi (10.3 bar)
Min. Yield:	1189 psi (82 bar)
Temp. Range:	32°F to 225°F (0°C to 107°C) Standard; -20°F to 225°F (-29°C to 107°C) Heater Option
Bypass Setting:	For Pressure Installations - 40 psi (2.8 bar) For Suction Installations - Blocked Bypass
Element Case:	Cast Aluminum, Anodized Aluminum, Anodized Cast Aluminum, Anodized
Weight of GHCF:	19.45 lbs. (8.82 kg)
Element Change Clearance:	4.5" (114 mm)

Markets

INDUSTRIAL

POWER GENERATION

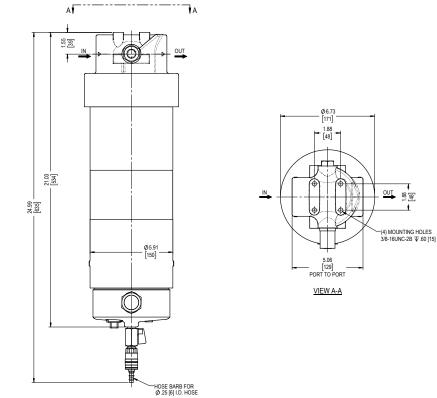
MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING

RAILROAD


AGRICULTURE

BULK FUEL

	25 gpm 95 L/min for pressure installations 15 gpm (900 gph) 3410 L/hr (57 L/min) for suction installations 150 psi 10.3 bar	ICF BDF BDA GHPF GHCF QCF
		BDS
		BDS2
		BDS3
		BDS4
		LVH-F
		LVH-C
		BDFC
	Filter Housing	BDFP
Ľ	Specificat	ionsc
		HDP
		HDPD
		BCC

GHCF GeoSeal[®] High-Flow Coalescing Filter

Metric dimensions in ().

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Coalescing Element	Performance	
	Recommended Flow	Single Pass Water Removal Efficiency
C125GZ5V	25 gpm	> 95%

Flow Direction: Inside Out Element Nominal Dimensions: 5" (127 mm) O.D. x 12" (305 mm) long

Element Collapse Rating: 150 psid (10.3 bar) for standard and non-bypassing elements *NOTE: Efficiency based on ULSD15 with 15-19 mN/m IFT (interfacial tension) and 2500 ppm water injection. Discharge water

concentration of <200 ppm undissolved water.

Fluid Compatibility

Performance

Information

Elements Sold

Separately

Filter Element **Selection** Coalescing Element

> Ultra-Low Sulfur Diesel (ULSD15) Low Sulfur Diesel (LSD500) Biodiesel Blends of Up to 20% (B20) Synthetic (GTL) and Renewable Diesel Fuel (HVO) Other Light Distillate Petroleum with a Flash Point of >125°F (52°C)

For other fluids, contact factory.

GeoSeal® High-Flow Coalescing Filter GHCF

*Coalescing Elements Patent-Pending $\Delta P_{\underline{element}}$ $\Delta P_{\text{housing}}$ **Pressure** Drop GHCF $\Delta P_{\rm housing}$ for fluids with sp gr= 0.86 $\Delta P_{element} =$ flow x element ΔP factor x viscosity factor Information Flow L/min Element ΔP factors @ 37 SUS (3 cSt). Based on (15) (30) (45) (65) (80) (90) C125GZ5V = 0.098 1.60 (0.11) Flow Rate (0.1) 1.40 and Viscosity (0.08) 1.20 (000) (par) If working in units of bars & L/min, divide above factor by 54.9. . <u>–</u> 0.80 – 0.60 Viscosity factor: Divide viscosity by 37 SUS (3 cSt). (0.04) GHCF 0.40 (0.03) 0.20 (0.01) 0.00 (0) 20 0 5 10 15 25 Flow gpm sp gr = specific gravity $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}}$ Notes Exercise: Determine ΔP at 25 gpm (95 L/min) for GHCFCG5V Solution: $\Delta P_{housing} = 1.6 \text{ psi} = [0.11 \text{ bar}]$ $\Delta P_{\text{coalescing}} = 25 \text{ x } 0.098 = 2.5 \text{ psi} [0.17 \text{ bar}]$ $\Delta P_{total} = 1.6 + 2.5 = 4.1 \text{ psi} [0.28 \text{ bar}]$

> Highlighted product eligible for

GHCF GeoSeal[®] High-Flow Coalescing Filter

Filt	ter How to Build a Valid Model Number for a Schroeder GHCF:						
Moc		BOX 1 GHCF –	BOX 2 BOX 3 BOX 4	BOX 5 BOX 6	BOX 7 BOX 8		
Numb			OTE: One option per box				
Selection	on	GHCF -	BOX 2 BOX 3 BOX 4 CG5 - V	BOX 5 BOX 6 S24 – D5	BOX 7 BOX 8	= GHCFCG5VS	524D5R
Highlighted product eligible QuickDelive							
		BOX 1	BOX 2		BOX 3	BOX 4	BOX 5
		Filter Series	Coalescing Filtrat	ion	Element Seal Material	Bypass Setting	Inlet Port
		GHCF	CG5 = C125GZ5V Coalesci	ng Element	V = Viton®	Omit = 40 psid	S24 = SAE-24
		Girci				X = Blocked Bypass	P24 = 1.5" NPTF
			BOX 6				
			Dirt Alarm [®] Options				
		D5 = V	isual pop-up w/manual reset				
		Omit = B	locked Indicator Ports (both)				
			BOX 7		BOX	3	
		In	dicator Orientation		Optio	15	
		R = Righ			ump Sight Glass (st		
		L = Left Omit = Nor	t Side ne (Blocked Indicator Ports)		pstream & Downst	tream Test Point S16 Active Sensor)	
					/IF Sensor w/ Indic		
					ump Heat (74W)		
					gal. Water Collect 0 gal. Water Collec		
					-	/ 5 gal. Collection T	ank
				AWD20 = A	uto Water Drain w	/ 20 gal. Collection	Tank
NOTES:				*Contact factor builder	y for other options	not listed in the mod	lel code
Box 4. A blocked by require							
user to ensu pressure rel	ure a						
integrated the syste	l into						
prevent	over-						
pressuring filter hou							

installations. Box 7. As viewed in the direction of the fluid flow from inlet to outlet.

when used in pressure

Box 8. Test point adapter replaces the blanking plug installed opposite the element indicator.

Bulk Diesel Fuel Coalescing Filter *Coalescing Elements Patent-Pending

Applications

B

BULK FUEL UNLOADING

HIGH-FLOW FUEL

INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

The Reason for Better Bulk Fuel Filtration

Advances in diesel engine fuel injection systems have been instrumental in complying with future emission standards. Higher pressure fuel injectors produce a finer mist of fuel, which burns cleaner. Common rail injection systems run at higher pressures and allow more injections per combustion cycle improving fuel economy, engine performance with lower noise. Higher pressure fuel injector systems have tighter tolerances and require the highest efficiency, single-pass particulate and water removal to minimize wear related failures.

Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuels tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- Complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown in application above 32°F (0°C)

Model no. of filter in photograph is: QCFC5VS24VM

70 gpm 265 L/min 100 psi 7 bar QCF

Markets

INDUSTRIAL

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

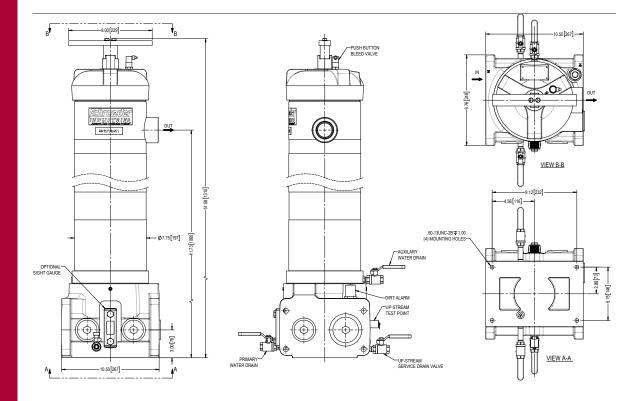
FLEET

MINING TECHNOLOGY

RAILROAD

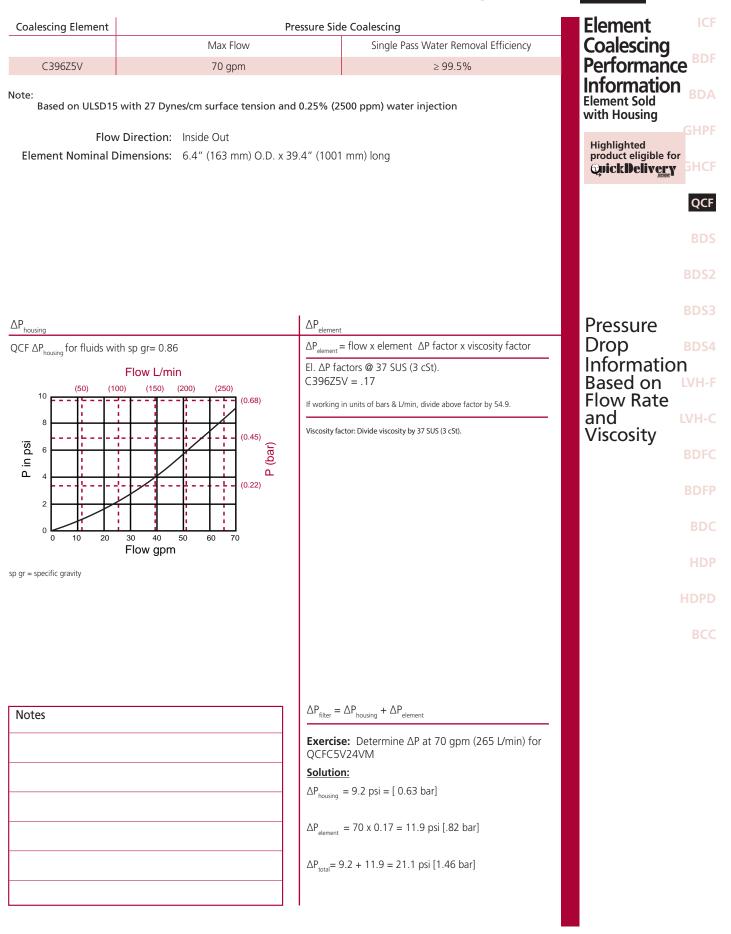
AGRICULTURE

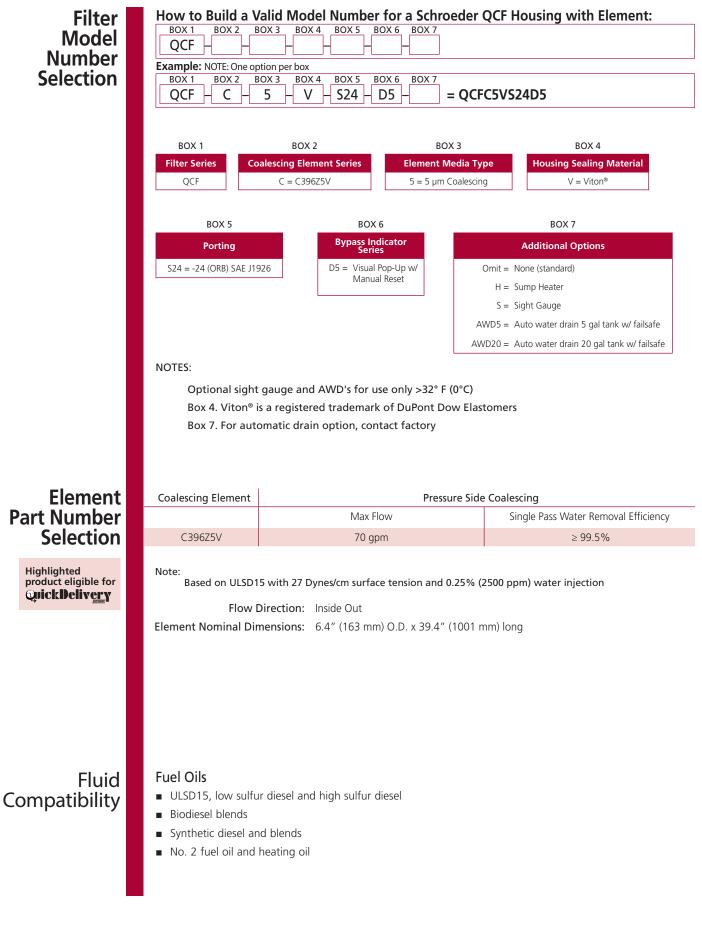
OCE


QCF Bulk Diesel Fuel Coalescing Filter

Flow Rating:	Up to 70 gpm (265 L/min) for ULSD15
Inlet/Outlet Connection:	-24 (ORB) SAE J1926
Drain Connection Upper:	1/4" NPT Ball Valve
Drain Connection Lower:	1/4 " NPT Ball Valve
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge
Rated Fatigue Pressure:	Contact Factory
Temperature range:	-20°F to 165°F (-29°C to 74°C) Standard 32°F to 165°F (0°C to 74°C) with optional sight gauge
Bypass Indication:	25 psi (1.7 bar) (Lower indication options available)
Bypass Valve Cracking:	30 psi (2 bar)
Materials of Construction:	Porting Base: Anodized Aluminum Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard) Cap: Nickel Coated Ductile Iron
Weight:	155 Lbs. (77 kg)
Element Change Clearance:	33.8" (858 mm)

NOTES:


Element is sold with housing


Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Fuel Coalescing Filter

O(

F Bulk Diesel Fuel Coalescing Filter

Bulk Diesel Fuel Skid BDS *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

Model no. of filter in photograph is: BDS39QPMLZ3VD5

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for high flow or highly contaminated fluid applications
- Routine element change is only needed on Pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest singlepass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Markets

INDUSTRIAL

GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

0

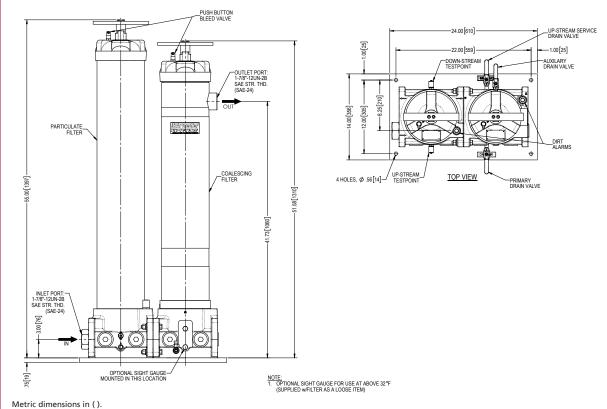
MINING

RAILROAD

FLEET

FILTRATION

AGRICULTURE TECHNOLOGY

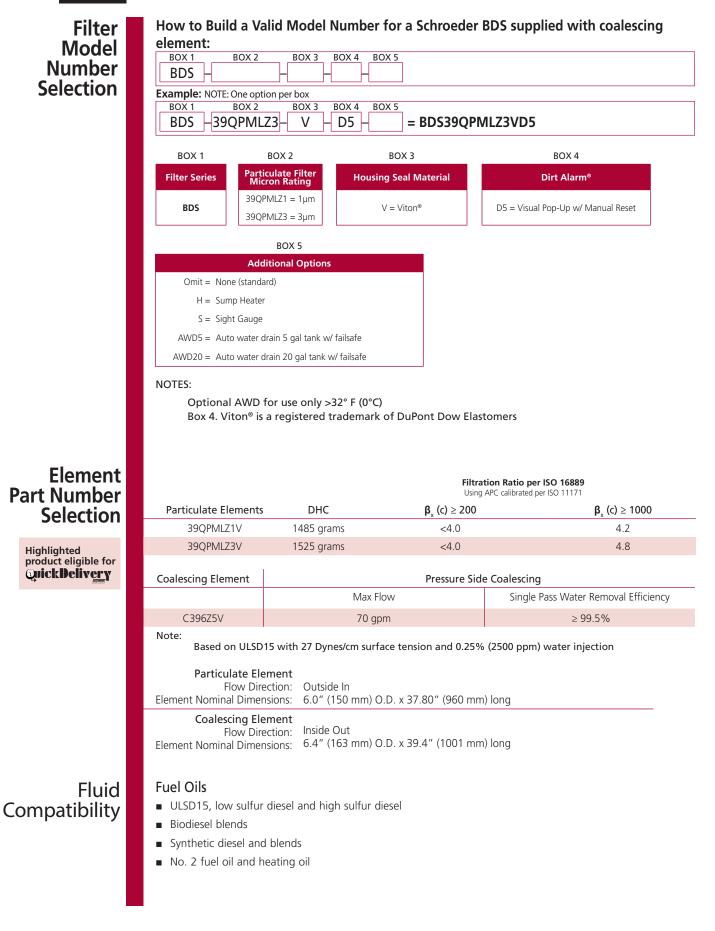

BDS Bulk Diesel Fuel Skid

Filter Housing Specifications

Flow Rating:	Up to 70 gpm (265 L/min) for ULSD15		
Inlet/Outlet Connection:	-24 (ORB) SAE J1926		
Drain Connection Upper:	1/4" NPT Ball Valve		
Drain Connection Lower:	1/4" NPT Ball Valve		
Max. Operating Pressure:	150 psi (10.3 bar)		
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge		
	Contact factory for yield pressure rating	with sight gauge	
Rated Fatigue Pressure:	Contact Factory		
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option		
	32°F to 165°F (0°C to 74°C) standard or AWD option		
Bypass Indication: (Lower indication options available)	<u>Particulate Filter</u> Particulate: 15 psi (1.03 bar)	<u>Coalescing Filter</u> Coalescing: 25 psi (1.7 bar)	
Bypass Valve Cracking:	<u>Particulate Filter</u> Particulate: 20 psi (1.37 bar)	<u>Coalescing Filter</u> Coalescing: 30 psi (2 bar)	
Materials of Construction:	Particulate Filter Porting Base: Anodized Aluminum Element Bowl: Epoxy Paint w/	<u>Coalescing Filter</u> Porting Base: Anodized Aluminum Element Bowl: Epoxy Paint w/	
	High-phos Electroless Nickel Plating (Standard)	High-phos Electroless Nickel Plating (Standard)	
	Cap: Plated Steel	Cap: Plated Steel	
Weight:	441 Lbs. (200 kg)		
Element Change Clearance:	33.8" (858 mm)		

NOTES:

Elements are sold with the housing


Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

BDS

Bulk Diesel Fuel Skid

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			Element ICF Particulate
Particulate Elements	DHC	$\boldsymbol{\beta}_{x}$ (c) ≥ 200	$\boldsymbol{\beta}_{x}$ (c) \geq 1000	– Performance ^{BDF}
39QPMLZ1V	1485 grams	<4.0	4.2	Information
39QPMLZ3V	1525 grams	<4.0	4.8	BDA
Coalescing Element	Pressure Side Coalescing		Element GHPF	
C396Z5V	Max Flo		Single Pass Water Removal Efficiency	Coalescing Performance ^{GHCF}
Note:	70 gpm ith 27 Dynes/cm surface ter		≥ 99.5% n) water injection	Information Elements Sold QCF
Particulate Ele Flow Dir Element Nominal Dime	With Housing BDS Highlighted product eligible for			
Coalescing Ele Flow Dir Element Nominal Dime	QuickDelivery BDS2			
				BDS5 BDS4
$\Delta P_{housing}$		$\Delta P_{element}$		Pressure
BDS $\Delta P_{\text{housing}}$ for fluids with s	sp. gr= 0.86	ΔP , = flow x	element ΔP factor x viscosity factor	Drop
-	Flow L/min	$EI. \Delta P factors @$		Information _{/H-C}
(50) (100)	(150) (200) (250)	C396Z5V = 0.1		Based on
10	(0.6	⁸⁾ 39QPMLZ1V =	0.01	Flow Rate BDFC
8		39QPMLZ3V =	0.01	and
in the second se		5) If working in units of	bars & L/min, divide above factor by 54.9.	Viscosity _{BDFP}
	0.2	Viscosity factor: Divide	viscosity by 37 SUS (3 cSt).	BDC
				HDP
	30 40 50 60 70 Flow gpm			HDPD
		$\Delta P_{\text{filter}} = \Delta P_{\text{housing}}$	+ $\Delta P_{element}$	BCC
Notes		BDS39QPMLZ3	rmine ΔP at 70 gpm (265 L/min) for VD5	
		<u>Solution:</u>		
		$\Delta P_{\text{housing}} = 10 \text{ ps}$		
		$\Delta P_{\text{element (39QPML)}} =$	70 x 0.01 = 0.7 psi [.05 bar]	
		$\Delta P_{\text{element (C396)}} = 7$	0 x 0.17 = 11.9 psi [.82 bar]	
		$\Delta P_{\text{total}} = 10 + 0.7$	+ 11.9 = 22.6 psi [1.56 bar]	

Bulk Diesel Fuel Skid

Bulk Diesel Multi-Skid *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

HIGH-FLOW FUEL

INJECTION SYSTEMS

KIDNEY LOOP RECIRCULATION

BULK TANK

BDS2

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

GENERATION

VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

MINING TECHNOLOGY

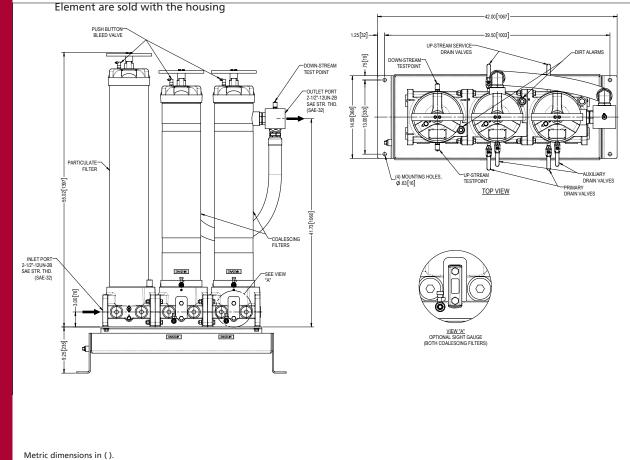
0

RAILROAD

Model no. of filter in photograph is:

BDS239QPMLZ3VD5

AGRICULTURE

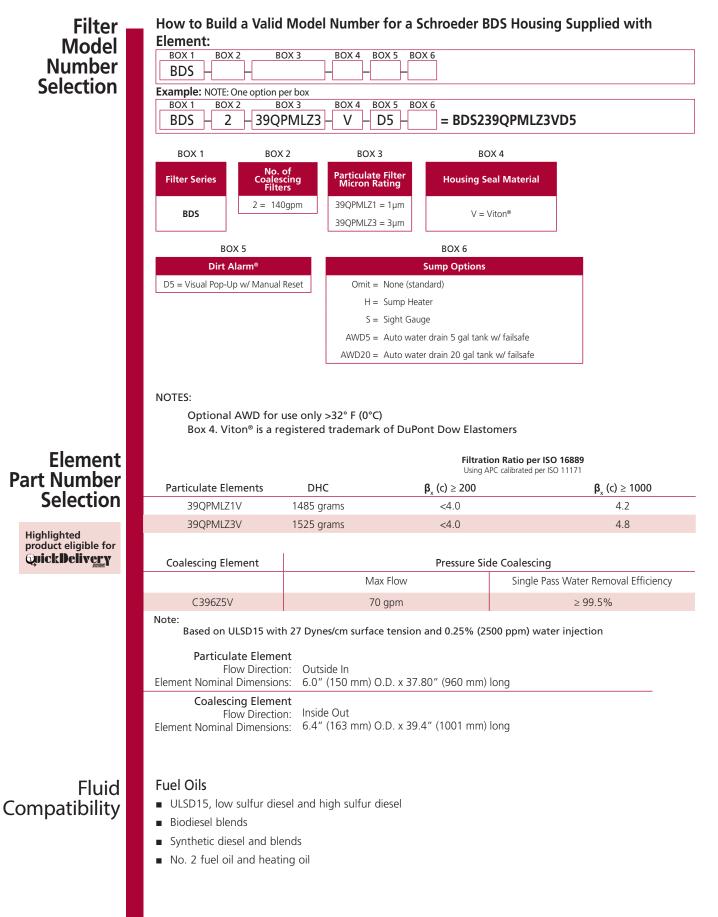


BDS2 Bulk Diesel Multi-Skid

Filter Housing Specifications

Flow Rating:	Up to 140 gpm (530 L/min) for ULSD15		
Inlet/Outlet Connection:	-32 (ORB) SAE J1926		
Drain Connection Upper:	1/4" NPT Ball Valve		
Drain Connection Lower:	1/4" NPT Ball Valve		
Max. Operating Pressure:	150 psi (10.3 bar)		
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge		
	Contact factory for yield pressure rating with sight gauge		
Rated Fatigue Pressure:	Contact Factory		
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option		
	32°F to 165°F (0°C to 74°C) standard or AWD option		
Bypass Indication:	Particulate Filter	Coalescing Filter	
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)	
Bypass Valve Cracking:	Particulate Filter	Coalescing Filter	
	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)	
Materials of Construction:	Particulate Filter	Coalescing Filter	
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum	
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	
	Cap: Plated Steel	Cap: Plated Steel	
Weight:	596 Lbs. (270 kg)		
Element Change Clearance:	33.8" (858 mm)		

NOTES:


Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS2

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			Element ^{ICI}
Particulate Elements	DHC	β_x (c) ≥ 200	β _x (c) ≥ 1000	Particulate
39QPMLZ1V	1485 grams	<4.0	4.2	Performance
39QPMLZ3V	1525 grams	<4.0	4.8	Information _{BD/}
Coalescing Element		Pressure Side Coalescing		
	Ma	k Flow	Single Pass Water Removal Efficiency	Coalescing
C396Z5V	70	gpm	≥ 99.5%	PerformanceGHC
Note: Based on ULSD15 with 27 Dyn		and 0.25% (2500 ppm) wat	ter injection	Information Elements Sold QC with Housing
Particulate Eleme Flow Directio Element Nominal Dimensio	Highlighted			
Coalescing Eleme Flow Directio Element Nominal Dimensio	on: Inside Out).D. x 39.4" (1001 mm) lon	9	product eligible for QuickIDelivery BDS2
			-	BDS
$\Delta P_{\text{housing}}$		$\Delta P_{element}$		Pressure BDS4
BDS $\Delta P_{\text{housing}}$ for fluids with sp gr	r= 0.86		element ΔP factor x viscosity factor	Drop
Flov	v L/min	El. ΔP factors @		Information Based on
14 (100) (200)	(300) (400) (600)	C396Z5V = 0.1 39QPMLZ1V =		Flow Rate
12		39QPMLZ3V =		and
			bars & L/min, divide above factor by 54.9.	Viscosity
AP in PSi			e viscosity by 37 SUS (3 cSt).	BDF
		.2)		BD
0 20 40 60 Flov	80 100 120 140 v gpm			HDI
sp gr = specific gravity				HDP
Notes		$\Delta P_{\text{filter}} = \Delta P_{\text{housing}}$	$_{g}$ + $\Delta P_{element}$	BC
		BDS239QPMLZ	ermine ΔP at 140 gpm (530 L/min) for 3VD5	
		Solution:		
		$\Delta P_{\text{housing}} = 12.0$	psi = [0.83 bar]	
		ΔP _{element (39QPML)} =	= 140 gpm x 0.01 = 1.4 psi [0.097 bar]	
		$\Delta P_{element (C306)} = 1$	40/2 gpm x 0.17 = 11.9 psi [0.82 bar]	
			+ 1.4 psi + 11.9 psi = 25.3 psi [1.74 bar]	
		total	1	
		—		

Bulk Diesel Multi-Skid

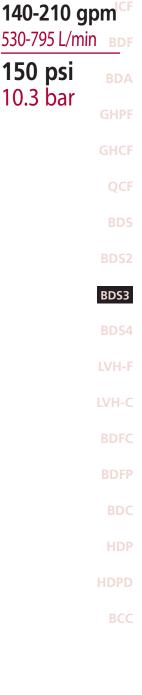
BD2

Bulk Diesel Multi-Skid

Applications

FLEET FILL / BULK FUEL TRANSFER

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS


KIDNEY LOOP / RECIRCULATION

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Model no. of filter in photograph is: BDS339QPMLZ3VD5

Markets

INDUSTRIAL

GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

FLEET

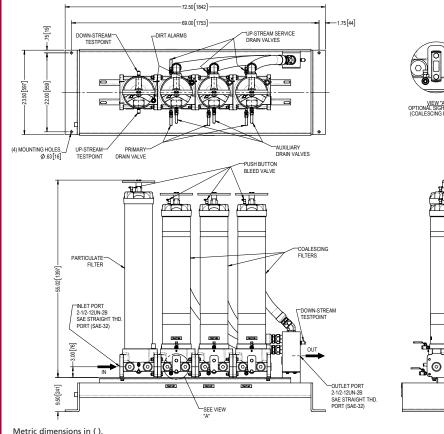
MINING TECHNOLOGY

0

RAILROAD

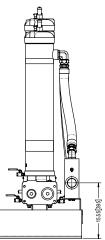
AGRICULTURE

FILTRATION


BDS3 Bulk Diesel Multi-Skid

Filter Housing Specifications

Flow Rating:	Up to 140 gpm to 210 gpm (530 to 795 L/min) for ULSD15		
Inlet/Outlet Connection:	-32 (ORB) SAE J1926		
Drain Connection Upper:	1/4" NPT Ball Valve		
Drain Connection Lower:	1/4" NPT Ball Valve		
Max. Operating Pressure:	150 psi (10.3 bar)		
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge		
	Contact factory for yield pressure rating with sight gauge		
Rated Fatigue Pressure:	Contact Factory		
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option		
	32°F to 165°F (0°C to 74°C) standard or AWD option		
Bypass Indication:	Particulate Filter	Coalescing Filter	
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)	
Bypass Valve Cracking:		Coalescing Filter	
	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)	
Materials of Construction:	Particulate Filter	Coalescing Filter	
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum	
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	
	Cap: Plated Steel	Cap: Plated Steel	
Weight:	596 Lbs. (270 kg)		
Element Change Clearance:	33.8" (858 mm)		


NOTES:

Elements are sold with the housing

VIEW "A" OPTIONAL SIGHT GAUGE (COALESCING FILTERS)

Metric dimensions in ().

Dimensions shown are inches for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Filtration Rat	io per ISO 16889	Element
39QPMLIZIV1485 gramsc.4.04.239QPMLIZIV1485 gramsc.4.04.239QPMLIZIV1525 gramsc.4.04.239QPMLIZIV1525 gramsc.4.04.2CollescingPerformancePerformanceCollescingPerformancePerformancePerformanceCollescingPerformancePerformanceCollescingPariculate ElementCollescing ElementBoto M Dicetor:Official colspan="2"Colspan="2">Colspan="2"PerformancePerformancePerformancePerformancePerformancePerformanceColspan="2"PerformancePerformancePerformanceColspan="2"PerformancePerformancePerformancePerformancePerformancePerformanceColspan="2"PerformanceColspan="2" <th>Particulato Elomonto</th> <th></th> <th></th> <th></th> <th>Particulate</th>	Particulato Elomonto				Particulate
390PMLZ3V1525 gramsInformationCoalescingElementMax RowSingle Pass Water Removal EfficiencyCoalescingCoalescingPerformance FICCoalescing ElementFlow Direction:Outside inFlow Direction:CoalescingPerformance FICCoalescing ElementFlow Direction:Sol Viside inFlow Direction:Inside OutElement Nominal Dimensions:6.4" (163 mm) O.D. x 37.80" (960 mm) longPressurePressureDOSEFlow L/minToo Viside InImplifying tooImplifying too <t< th=""><th></th><th></th><th>~</th><th>~</th><th>Performance^{BDI}</th></t<>			~	~	Performance ^{BDI}
Max FlowSingle Pass Water Removal EfficiencyCoalescingC39625V70 gpm \geq 99.5%Nete:Based on ULSD15 with 27 Dynex/cm surface tension and 0.25% (2500 ppm) water injectionParticulate ElementParticulate ElementFlow Direction: Flow Dir		5			Information _{BD/}
Max FlowSingle Pass Water Removal EfficiencyCoalescingC39625V70 gpm \geq 99.5%Nete:Based on ULSD15 with 27 Dynex/cm surface tension and 0.25% (2500 ppm) water injectionParticulate ElementParticulate ElementFlow Direction: Flow Dir					
C39625VPerformance SHCNote: Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injectionPerformance SHCParticulate Element Flow Direction: Coalescing Element Box Direction: Inside Out Element Nominal Dimensions: 6.4" (163 mm) O.D. x 37.80" (960 mm) longPerformance SHC Information Element Nominal Dimensions: 6.4" (163 mm) O.D. x 37.80" (960 mm) longDode Coalescing Element Box Direction: Induct eligible for product eligible for product eligible for Coalescing for fluids with sp gr = 0.86AP dementAP coares BDS AP Doares Direction: Element Nominal Dimensions:AP dementFlow L/min 10 11 11 11 11 12 12 12 13 14<	Coalescing Element		Pressure Side Co	alescing	Element GHP
Note: Best on ULSD 15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection Particulate Element Flow Direction: Outside in Element Nominal Dimensions: 6.0" (150 mm) 0.0. x 37.80" (960 mm) long Coolescing Element Flow Direction: Inside Out Element Nominal Dimensions: 6.4" (163 mm) 0.0. x 39.4" (1001 mm) long $\frac{\Delta P_{boxerg}}{BDS \Delta P_{means}} = flow x element \Delta P factor x viscosity factor El \Delta P_{accorg} = flow x element \Delta P factor x viscosity factor El \Delta P_{accorg} = flow x element \Delta P factor x viscosity factor El \Delta P_{accorg} = flow x element \Delta P factor x viscosity factor El \Delta P_{accorg} = flow x element \Delta P factor by 54.8.Flow L/min10101010101010101010$		Max F	low S	Single Pass Water Removal Efficiency	
Based on ULSD1's with 27 Dynektm surface tension and 0.25% (2500 ppm) water injection Particulate Element Flow Direction: Outside in Element Nominal Dimensions: 6.4" (150 mm) 0.D. x 37.80" (960 mm) long Coalescing Element Flow Direction: Inside Out Element Nominal Dimensions: 6.4" (163 mm) 0.D. x 39.4" (1001 mm) long $\Delta P_{tourney}$ BDS ΔP_{maxes} for fluids with sp gr= 0.86 Flow L/min 16 17 17 17 17 17 17 17 17 17 17		70 g	om	≥ 99.5%	
Flow Direction:Outside In Element Nominal Dimensions:BD 6.0° (150 mm) C.D. x 37.80° (960 mm) longDD (960 mm) longDD (960 mm) longDD (960 mm) longCollecting Element How Direction:Inside Out Element Nominal Dimensions:6.4° (163 mm) O.D. x 39.4° (1001 mm) longBDS AP (1001 mm) longBDS AP (1001 mm) longBDS AP (1001 mm) longPressure BDS AP (100 mm) CD x 39.4° (1001 mm) longBDS AP (100 mm) CD x 39.4° (1001 mm) longBDS (100 mm) CD x 39.4° (100 m	Based on ULSD15 with 2		sion and 0.25% (2500 ppm) water injection	Elements Sold QC
$\frac{\Delta P_{content}}{Element Nominal Dimensions:} 6.4" (163 mm) O.D. x 39.4" (1001 mm) long$ $\frac{\Delta P_{content}}{BDS \Delta P_{content}} \frac{\Delta P_{element}}{BDS \Delta P_{content}} \frac{\Delta P_{element}}{\Delta P_{element}} $	Flow Directic Element Nominal Dimensior	on: Outside In ns: 6.0" (150 mm) O.E	0. x 37.80" (960 mm) long		Highlighted
$\frac{\Delta P_{bound}}{BDS \Delta P_{bound}} for fluids with sp gr= 0.86$ $\frac{P_{dement}}{Flow L/min}$ $\frac{P_{low l}}{10} + \frac{P_{low l}}{10}$	Flow Directio	n: Inside Out	0. x 39.4" (1001 mm) long		
$\frac{\Delta P_{decenty}}{BDS \Delta P_{nousing}} \text{ for fluids with sp gr = 0.86}$ $\frac{Flow L/min}{16}$ $\frac{150}{120} (300) (450) (600) (750) (1.$			-		BDS3
BDS $\Delta P_{browing}$ for fluids with sp gr = 0.86 Flow L/min 150 150 150 150 150 150 150 150	$\Delta P_{housing}$		$\Delta P_{element}$		Pressure
Flow L/min 150 (300) (450) (600) (750) 14 (1.0) 12 (0.8) 2 (0.6) 2 (0.6) 2 (0.4) 2 (0.4) 3 (0.4) 4 (0.4)		= 0.86	$\Delta P_{element} = flow x \in$	element ΔP factor x viscosity factor	
Flow L/min 39QPMLZIV = 0.01 $39QPMLZ3V = 0.01$ 4 4 2 2 2 2 2 2 2 2 2 2					
$\frac{(150)}{2} (300) (450) (600) (750) (1.0$	Flow I	/min			
$\frac{1}{12}$	(150) (300) (4				and
$\frac{12}{10}$ $\frac{1}{10}$))		
$\frac{1}{1}$	12		3) Viscosity factor: Divide v		BDFI
$\Delta P_{\text{fiter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}}$ $\Delta P_{\text{housing}} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{\text{housing}} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{\text{element}(390\text{ PML})} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi} [0.14 \text{ bar}]$ $\Delta P_{\text{element}(390\text{ PML})} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$	8) (bar)		BDO
$\frac{\Delta P_{\text{titer}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}}}{\Delta P_{\text{element}} = 15 \text{ psi} = [1.03 \text{ bar}]}$ $\Delta P_{\text{element}(C396)} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$	6	 (0.4	⁺⁾		HDI
$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}}$ $\Delta P_{\text{housing}} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{\text{element (39QPML)}} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi} [0.14 \text{ bar}]$ $\Delta P_{\text{element (C396)}} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$			2)		
0 25 50 75 100 125 150 175 210 Flow gpm $\Delta P_{filter} = \Delta P_{housing} + \Delta P_{element}$ $\Delta P_{filter} = \Delta P_{housing} + \Delta P_{element}$ BCC Notes $\Delta P_{housing} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{element (39QPML)} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi} [0.14 \text{ bar}]$ $\Delta P_{element (C396)} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$					HDPE
NotesExercise: Determine ΔP at 210 gpm (795 L/min) for BDS239QPMLZ3VD5Solution: $\Delta P_{housing} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{element (39QPML)} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi} [0.14 \text{ bar}]$ $\Delta P_{element (C396)} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$	0 25 50 75 100				PC
$\Delta P_{element (C396)} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi } [0.14 \text{ bar}]$	Flow g	lpm	$\Delta P_{\text{filter}} = \Delta P_{\text{housing}}$	+ ΔP _{element}	BCC
$\Delta P_{\text{housing}} = 15 \text{ psi} = [1.03 \text{ bar}]$ $\Delta P_{\text{element (39QPML)}} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi} [0.14 \text{ bar}]$ $\Delta P_{\text{element (C396)}} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi} [0.82 \text{ bar}]$	Notes				
$\Delta P_{\text{element (39QPML)}} = 210 \text{ gpm x } 0.01 = 2.1 \text{ psi } [0.14 \text{ bar}]$ $\Delta P_{\text{element (C396)}} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi } [0.82 \text{ bar}]$			Solution:		
$\Delta P_{\text{element (C396)}} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi } [0.82 \text{ bar}]$			$\Delta P_{\text{housing}} = 15 \text{ psi}$	= [1.03 bar]	
$\Delta P_{\text{element (C396)}} = 210/3 \text{ gpm x } 0.17 = 11.9 \text{ psi } [0.82 \text{ bar}]$			$\Delta P_{\text{element (39QPML)}} = 2$	210 gpm x 0.01 = 2.1 psi [0.14 bar]	
			total - 15 psi + 2		

Bulk Diesel Multi-Skid

BD.

Bulk Diesel Multi-Skid

Applications

FLEET FILL / BULK FUEL TRANSFER

BUI

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

BULK TANK KIDNEY LOOP / RECIRCULATION

Model no. of filter in photograph is: BDS439QPMLZ3VD5

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP[®]) is standard for all coalescing elements

INDUSTRIAL

POWER GENERATION

MOBILE VEHICLES

COMMON RAIL INJECTOR SYSTEMS

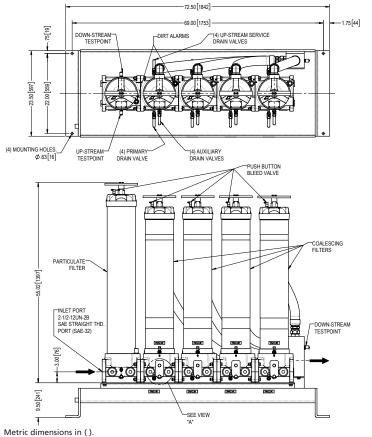
FLEET

MINING TECHNOLOGY

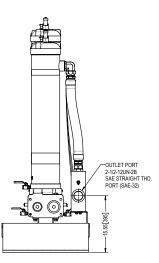
0

RAILROAD

AGRICULTURE

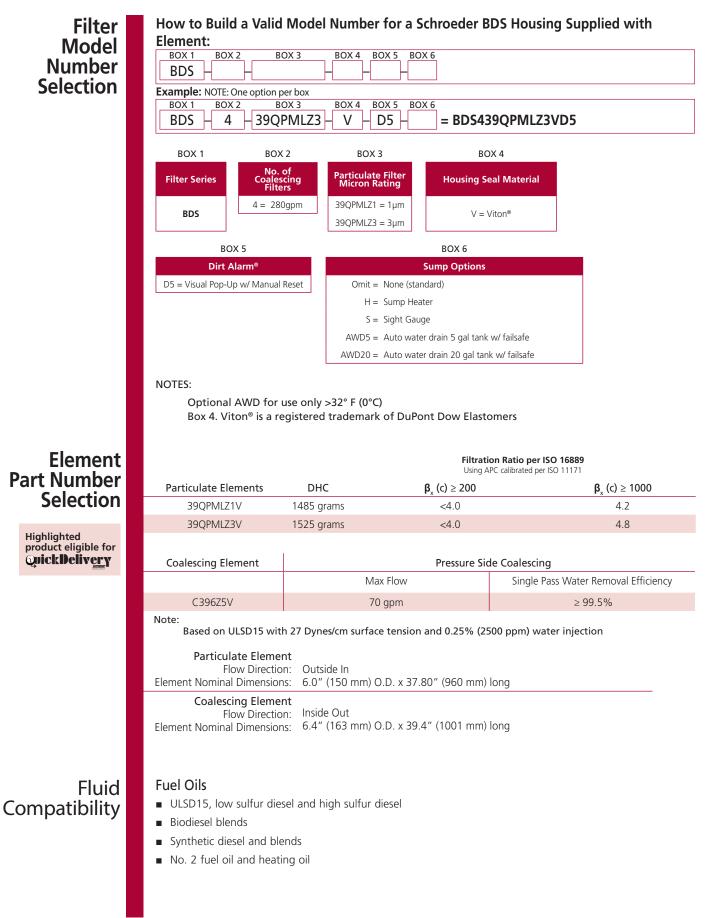

210-280 g 795-1060 L/m	
150 psi	BDA
10.3 bar	GHPF
	GHCF
	QCF
	BDS
	BDS2
	BDS3
	BDS4
	LVH-F
	LVH-C
	BDFC
	BDFP
	BDC
	HDP
	HDPD
	BCC

BDS4 Bulk Diesel Multi-Skid


_			
Flow Rating:	From 210 gpm to 280 gpm (795 to 106	50 L/min) for ULSD15	
Inlet/Outlet Connection:	-32 (ORB) SAE J1926		
Drain Connection Upper:	1/4" NPT Ball Valve		
Drain Connection Lower:	1/4" NPT Ball Valve		
Max. Operating Pressure:	150 psi (10.3 bar)		
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge		
	Contact factory for yield pressure rating with sight gauge		
Rated Fatigue Pressure:	Contact Factory		
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option		
	32°F to 165°F (0°C to 74°C) standard or	r AWD option	
Bypass Indication:	Particulate Filter	Coalescing Filter	
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)	
Bypass Valve Cracking:	Particulate Filter	Coalescing Filter	
	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)	
Materials of Construction:		Coalescing Filter	
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum	
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	
	Cap: Plated Steel	Cap: Plated Steel	
Weight:	904 Lbs. (410 kg)		
Element Change Clearance:	33.8" (858 mm)		

NOTES:

Elements are sold with the housing



Dimensions shown are inches for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS4

		Filtration Ratio Using APC calibrate		Element	
Particulate Elements	DHC	β_x (c) $\ge 200^{\circ}$	$\boldsymbol{\beta}_{\mathrm{x}}$ (c) \geq 1000	Particulate	
39QPMLZ1V	1485 grams	<4.0	4.2	Performance	
39QPMLZ3V	1525 grams	<4.0	4.8		
Coalescing Element		Pressure Side Coale	-	Element GHF Coalescing	
Max Flow		ax Flow Sin	Single Pass Water Removal Efficiency		
C396Z5V	70) gpm	≥ 99.5%	PerformanceGHC	
Particulate Eleme Flow Directic	nt n: Outside In	ension and 0.25% (2500 ppm) v	vater injection	Information Elements Sold with Housing	
Coalescing Eleme Flow Directic	nt n: Inside Out	D.D. x 37.80" (960 mm) long D.D. x 39.4" (1001 mm) long		Highlighted product eligible for QuickDelivery	
				BDS	
$\Delta P_{housing}$		$\Delta P_{element}$		Pressure	
BDS $\Delta P_{\text{housing}}$ for fluids with sp gr	= 0.86		$\Delta P_{element} = $ flow x element ΔP factor x viscosity factor		
		El. ∆P factors @ 37	SUS (3 cSt).	Drop LVH Information	
Flow L/mi		C396Z5V = 0.17 39QPMLZ1V = 0.0	1	Based on LVH- Flow Rate	
(200) (400) (600)	(800) (1000)	390PMLZ3V = 0.0		and BDF	
		(1.25)	& L/min, divide above factor by 54.9.	Viscosity	
		(1.0) Viscosity factor: Divide visc		BDF	
· - · · · · · · · · · · · · · · · · · ·		(0.75) (100 g		BD	
		(0.5) •		HD	
		(0.25)		HDP	
0 25 50 75 100 125 150 17 Flow gpm	5 200 225 250 275 2 1	$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + A$	ΔΡ	BC	
Notes		Exercise: Determi	ne ΔP at 280 gpm (1060 L/min) for		
		BDS239QPMLZ3VE)5		
		$\Delta P_{\text{housing}} = 19 \text{ psi } [1.$			
			0 gpm x 0.01 = 2.8 psi [0.19 bar]		
		$\Delta P_{\text{element (C396)}} = 280/4$	4 gpm x 0.17 = 11.9 psi [0.82 bar]		
		$\Delta P_{total} = 19 \text{ psi} + 2.8$	psi + 11.9 psi = 33.7 psi [2.32 bar]		
		—			

Bulk Diesel Multi-Skid

High Flow | Low Viscosity Housing Filter *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

UNLOADING

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

LVH-F

Features and Benefits

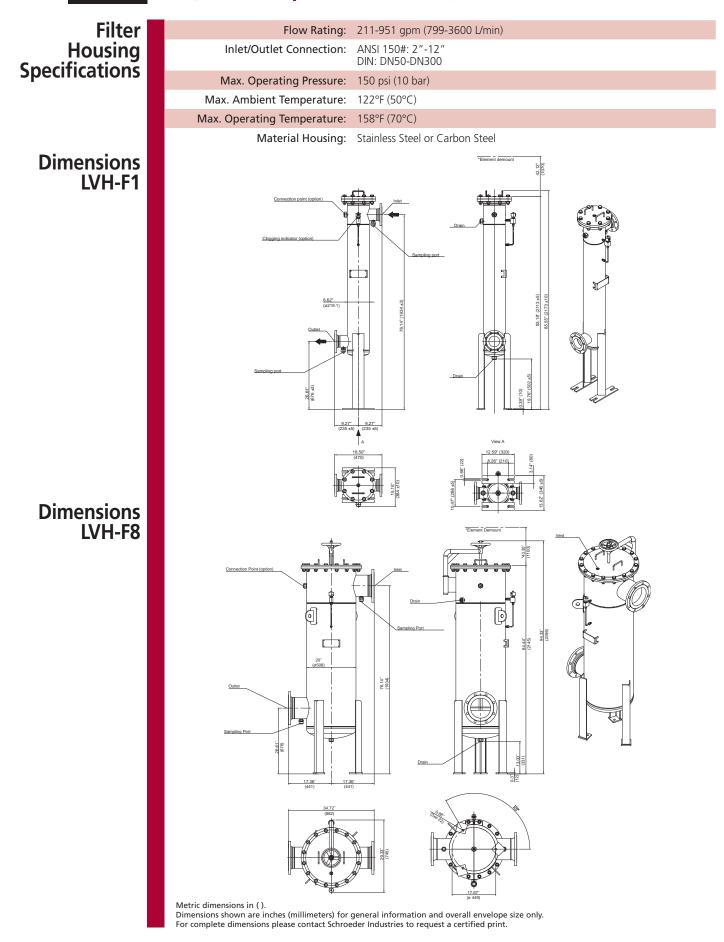
- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- Easy to adapt to filter housings for the removal of the fine particles in diesel
- The Low Viscosity-Housing Filter LVH-F is mainly used to filter low-viscosity fluids. It is especially suitable for applications with large amounts of dirt that need to be removed in just a single pass
- The Optimicron[®] filter elements used here ensure that both the required cleanliness and a long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Model no. of filter in photograph is: LVHF340NBRFZ

Markets

BULK FUEL FILTRATION

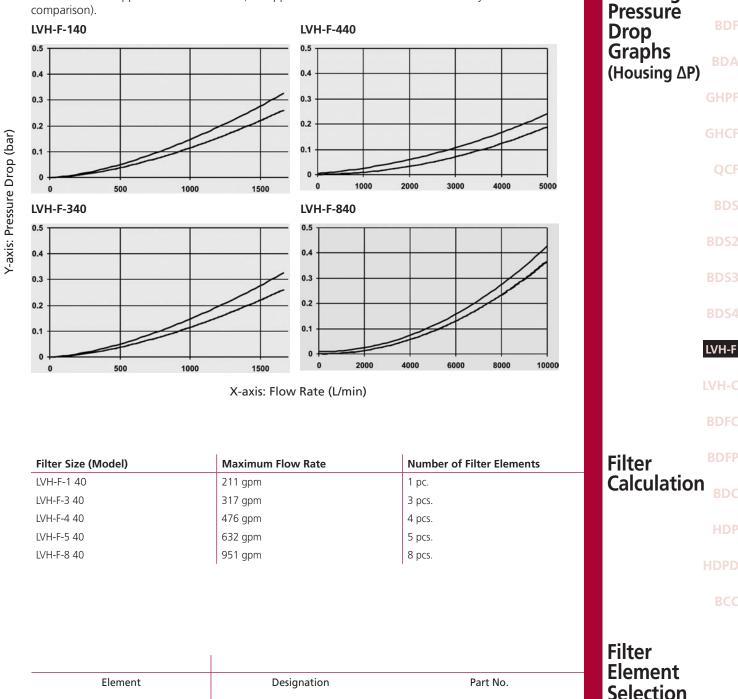
MARINE


MINING TECHNOLOGY

POWFR GENERATION

LVHF High Flow | Low Viscosity Housing Filter

High Flow | Low Viscosity Housing Filter LVHF


Housing

Filter elements must be ordered separately and installed before

initial operation

on-site

The lower curve applies to diesel at 20°C (the upper curve is for mineral oil with viscosity to 30 cSt for comparison).

* Contact Factory for More Details

LVHF High Flow | Low Viscosity Housing Filter

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder LVH-F Supplied with Element: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	BOX 1 BOX 2 Filter Series LVH LVH	BOX 3 Filter Size 1 = 1 filter element 3 = 3 filter elements 4 = 4 filter elements 5 = 5 filter elements 8 = 8 filter elements	BOX 4 Filter Element Length 40 = 40"	BOX 5 Housing Material E = Stainless Steel N = Carbon Steel
	BOX 6BOXMountingPressureV = VerticalB = 150 psH = HorizontalC = 232 ps	Pange Hydraulic si (10 bar) A2 = 2" si (16 bar) A3 = 3" A4 = 4" A6 = 6" A8 = 8" L = DIN R = DIN V = DIN W = DIN W = DIN	Connection S ANSI 150# SORF F ANSI 150# SORF ANSI 150# SORF ANSI 150# SORF ANSI 150# SORF ANSI 150# SORF ANSI 150# SORF	BOX 9 Sealing = Viton®
	C12 = Differential pressure indicat D17 = Differential pressure indicat D18 = Differential pressure indicat D32 = Differential pressure indicat (PVL2GW.0/ V-113) D33 = Differential pressure indicat (PVL2GW.0/ 111-16) Z = Without clogging indicator	Clogging Indicator C12 = Differential pressure indicator, electrical D17 = Differential pressure indicator, visual/electrical (230V) D18 = Differential pressure indicator, visual/electrical (240V) D32 = Differential pressure indicator, visual/electrical (PVL2GW.0/ V-113) D33 = Differential pressure indicator, visual/electrical (PVL2GW.0/ 111-16) Z = Without clogging indicator		ation n
Fluid Compatibility	 Fuel Oils ULSD15, low sulfur diesel and Biodiesel blends Synthetic diesel and blends No. 2 fuel oil and heating oil 	high sulfur diesel		

High Flow | Low Viscosity Housing Coalescer *Coalescing Elements Patent-Pending

Applications

FLEET FILL / BULK FUEL TRANSFER

HIGH-FLOW FUEL INJECTION SYSTEMS

BULK TANK

KIDNEY LOOP / RECIRCULATION

Features and Benefits

- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- The Low Viscosity-Housing Coalescer LVH-C is mainly used for dewatering of diesel, making it especially suitable for applications with large amounts of water that need to be removed in just a single pass
- The Optimicron[®] filter elements used ensure that both the required cleanliness and long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to the ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Model no. of filter in photograph is: LVHCD440NVBTFZ

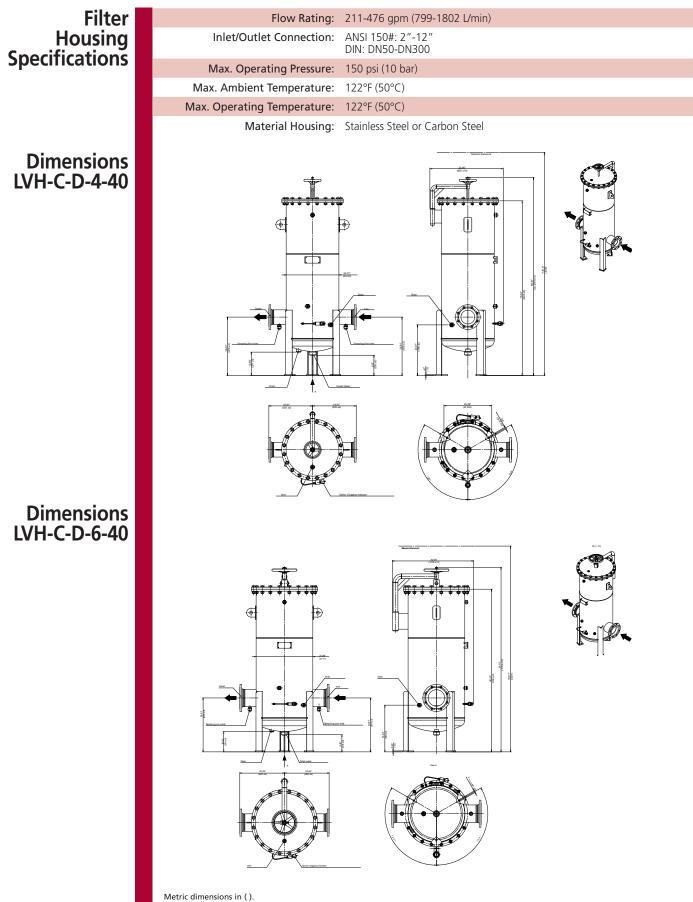
LVH-C

Markets

BULK FUEL FILTRATION

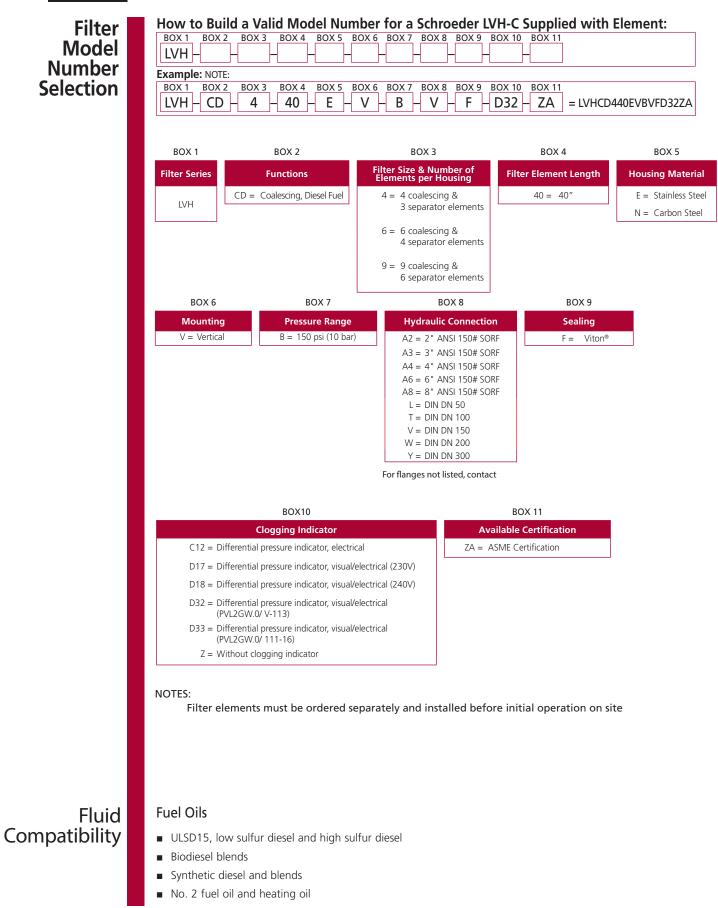
MARINE

TECHNOLOGY


AGRICULTURE

GENERATION

LVHC High Flow | Low Viscosity Housing Coalescer



For complete dimensions in (). For complete dimensions and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

High Flow | Low Viscosity Housing Coalescer LVHC

	5 (660 ±5)	Telement demount		Dimensions GHPF LVH-C-D-9-40 GHCF BDF BDF BDFA BDFA BDA QCF BDS2 BDS3
				BDS4
Vent	Option clogging indicator			LVH-C
				LVH-C
Filter Size (Model)	Maximum Flow Rate	Number of Coalescing Elements	Number of Separator Elements	Filter BDFP
LVH-CD-4 40	211 gpm	4 pcs.	3 pcs.	Calculation _{BDFC}
LVH-CD-6 40	317 gpm	6 pcs.	4 pcs.	
LVH-CD-9 40	476 gpm	9 pcs.	6 pcs.	BDC
				HDP
				HDPD
				EPM
				Filter
Flement	Mode	l Code	Part No.	Filter Element EPTT
Element		l Code	Part No.	Filter Element EPTT Selection
Element Separation Element 3 Coalescing Element 4	80" N32ON-D	I Code DSZ-SA80F CZ-CA60F	Part No. 3910259 3910257	Filter Element EPTT

LVHC High Flow | Low Viscosity Housing Coalescer

