

PROCESS FILTRATION

Product Line Overview

Easy-to-Control Systems

Increased Process Reliability

> Reduced Operating Costs

Lower Maintenance Efforts & Costs

Quality Policy

Continuous improvement in our business to ensure a quality product, shipped on time, without compromise.

Limitations of Liability

The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder's terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise.

It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.

Schroeder Process Filtration Table of Contents

	Pressure psi (bar)	Flow gpm (L/min)	Page
Corporate Overview			4
Introduction to Process Filtration Technology			5
Industries Served			6
Filter Selection			7
Element Selection Guide			8
Automatic Backflushing Filters			10
Backflushing Filters			11
RF3-C — RF3-8: Backflushing Filter AutoFilt [®] RF3	150 (10)	20-120 (80-470)	14
RF5: Backflushing Filter AutoFilt® RF5	87 (6)	748-18,480 (170-4200)	18
RF7: Backflushing Filter AutoFilt® RF	87 (6)	83-33,022 (22-12,501)	20
RF10: Backflushing Filter AutoFilt® RF10	87 (6)	2210-12,940 (580-3420)	22
RF4-1: Backflushing Filter AutoFilt® RF4	87 (6)	35 (120)	28
RF4-2: Backflushing Filter AutoFilt® RF4	87 (6)	60 (220)	32
RF12: Backflushing Filter AutoFilt® RF12	145 (10)	21 (80)	34
RF14: Backflushing Filter AutoFilt® RF14	88 (6)	15,400 (58,295)	36
BTU: Backflush Treatment Unit	150 (10)	32-1120 (120-4235)	40
ATF-1: Automatic Twist Flow Strainer ATF	230 (16)	35 (132)	44
ATF-2, 2.5, 3: Automatic Twist Flow Strainer ATF	230 (16)	480 (1816)	48
ATF-3.5, 4: Automatic Twist Flow Strainer ATF	230 (16)	1760 (6662)	50
PLF1: Process Inline Filter PLF	145/230 (10/16)	881 (4005)	52
PLF2: Process Inline Filter PLF	145/230 (10/16)	881 (4005)	54
PVD: Clogging Indicators for Process Filters	0-6174 (0-420)	-	56
Bag Housings and Elements			61
BH1: Single Bag Housings - 100 psi	100 (7)	200 (757)	64
BH1: Single Bag Housings - 150 psi	150 (10)	200 (757)	65
BH1-BH14: Multi Bag Housings	150 (10)	296-1981 (1200-7500)	67
DBH1-DBH10: Duplex Multi Bag Housings	150 (10)	792-3962 (3000-15,000)	69
Bag Element Operating Guidelines			71
Micron-Rated Bag Elements	-	-	73
PEPT: Polyester Phenolic Treatment Liquid Bag			74
OAB: Oil Absorbing Bag Elements	-	-	76
High Efficiency Bag Elements	-	-	77
PPH: High Efficiency Bag Elements	-	-	78
PPA: Absolute Rated Bag Elements	-	-	78
BR: Bag Type High Flow Filter Cartridges	-	-	79
Cartridge Housings and Elements			83
SW: Series Precision Wound Filter Cartridges	60 (2)	-	85
DCE: Economical Meltblown Elements/Crar		-	87
ACE: Cartridge Housings and Elements	35 (2.4)		87
PP: High Purity Pleated Polypropylene Cartridges	-	-	87
CH1: Cartridge Housings and Elements	125 (9)	- 1-5 (3.6-18.33)	91
CH3-CH7: Cartridge Housings and Elements	125 (9)		91
CH3-CH12: Cartridge Housings and Elements		0-123 (0-467)	93
CH13-CH173: Cartridge Housings and Elements	150 (10)	5-40 (18.33-150)	95
		70/600 (260 2270)	100
Media Filter: RMF: Rolling Media Filtration		70/600 (268-2270)	
Oil and Gas Products: PPS: Oil and Gas Products	-	-	103
Mining Products	(000 (400)	200 (1125)	107
LW60: Longwall Filter	6000 (400)	300 (1135)	110
Mining Specific Elements	-	-	112
Glossary			119

Corporate Overview

Schroeder Industries, an ISO 9001:2015 certified company, focuses on developing filtration and fluid service products for our customers in the fluid power industry, and is proud of our proven track record of providing quality products over the last sixty five years. The designs you see in this catalog are the result of thousands of hours of field testing and laboratory research and decades of experience.

Schroeder was one of the first companies to demonstrate the need for, and benefits of, hydraulic filtration. We pioneered the development of micronic filtration, helping to set performance standards in industrial fluid power systems. As a result. Schroeder is now a leader in filtration and fluid conditioning and the proof of our expertise lies in our broad mix of unsurpassed products. Our mission statement reflects our continuing commitment to excellence:

Partnerships

Innovating products, solutions, processes and services to improve performance and efficiency in industry.

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customized process to fill specific customer needs
- Increasing manufacturing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for our customers

Our goal is to be your partner in filtration. Our expertise in filtration technology, superior filter and element technology capabilities and a level of dedication to customer service and product support are the reasons we're a worldwide leader in Advanced Fluid Conditioning Solutions.™

Committed to providing the best available filter products, Schroeder Industries will show how we meet all of the necessary cleanliness levels at a competitive price. As a cost-effective quality producer, we will work with your purchasing department to supply filtration technology and develop long-range pricing programs that can improve your company's bottom line.

Introduction to Process Filtration Technology

The keystone product of Schroeder Process Filtration is the RF3 automatic self-cleaning backflush filter. This filter along with bag filters, cartridge filters and custom designed systems allows Schroeder to offer you complete solutions to your process filtration needs.

Our process filters are used to remove solid contamination from fluids and protect the integrity of high grade components that depend on low viscosity water or water-based fluids and emulsions. Schroeder offers high performance filters for all municipal and industrial sectors. Improvements in operational efficiency, reduced downtime, lower maintenance costs and reduced environmental impact can all be expected.

Schroeder's backflush filters come in many sizes to fit a wide range of applications. From pressures of 150 psi to 5,000 psi and flows from 20 gpm to 33,000 gpm, there is a backflush solution for many processes. Backflush filters are either automatic or manually operated. Many are made from stainless steel, but they are also available in carbon steel, with protective coating or from brass. Backflush filters are generally used more for coarse filtration.

Fine filtration can be achieved in many ways. Schroeder offers bag filters and cartridge filters to filter fluids as low as 0.2 micron. Bag, cartridge and rolling media filters offer an economical filtration solution. The elements are disposable and easily changed.

The most important aspects of filter selection include performance, efficiency, system parameters and of course, economic impact. Choosing the proper filter for your specific need is not difficult, but certainly requires some attention and understanding of specific parameters. This catalog was designed to help you find the right filter to meet your needs.

Industries Served

Agriculture

Irrigation is critical to the success of the agriculture industry. Filtering irrigation water will extend the life of pumps, pipes, nozzles and headers.

Automotive Manufacturing

Better filtration of cutting fluid water emulsions to extend service life and reduce environmental impact. Treatment of the cooling water allows for a cleaner, less abrasive supply.

Chemical Processing Improving the product quality by filtration of process fluids.

Industrial

Continuous filtration of cooling water, cutting fluids and other service liquids within the plant increases component reliability and reduced downtime due to service interventions.

Machine Tool

Marine

Improving the condition of emulsified cutting fluids to extend service life and reduce environmental impact.

Filtration of inlet water used for cooling various components, fire suppression, bilges, ballast and raw stock

|--|

56

Mining Technology

for potable water generators.

Underground spray water filtration for process consistency and improved reliability of pumps and cutting heads. Treatment of water hydraulics in long-wall applications to increase component life and reduce environmental impact.

Offshore

Filtration of inlet water used for cooling various components, fire suppression, bilges and raw stock for potable water generators.

Paper Industry

Protecting screen spray nozzles and dynamic shaft seals through efficient filtration to increase efficiency and extend service life.

Power Generation

Treatment of inlet cooling water supply for the generators allows for a cleaner, less abrasive supply. Filtration of the water supply to the dynamic "sliding-ring" water seal on the turbine shaft increases service life of the seal.

Sewage Water and Waste Water Treatment

Coarse and fine filtration of the water supply and pre-treatment of effluent. In industrial situations, take-off filtration of the clear run water saves valuable potable resources and provides excellent protection of costly membrane systems.

Steel Making

Treatment of inlet cooling water supply used for various processes, including rolling mills and furnaces. Nozzles and pumps in descaling operations are protected by thorough filtration of the water.

Thermal Transfer

Protection of heat exchangers and radiant devices from becoming clogged with solid contaminants in the transfer fluid.

Filter Selection

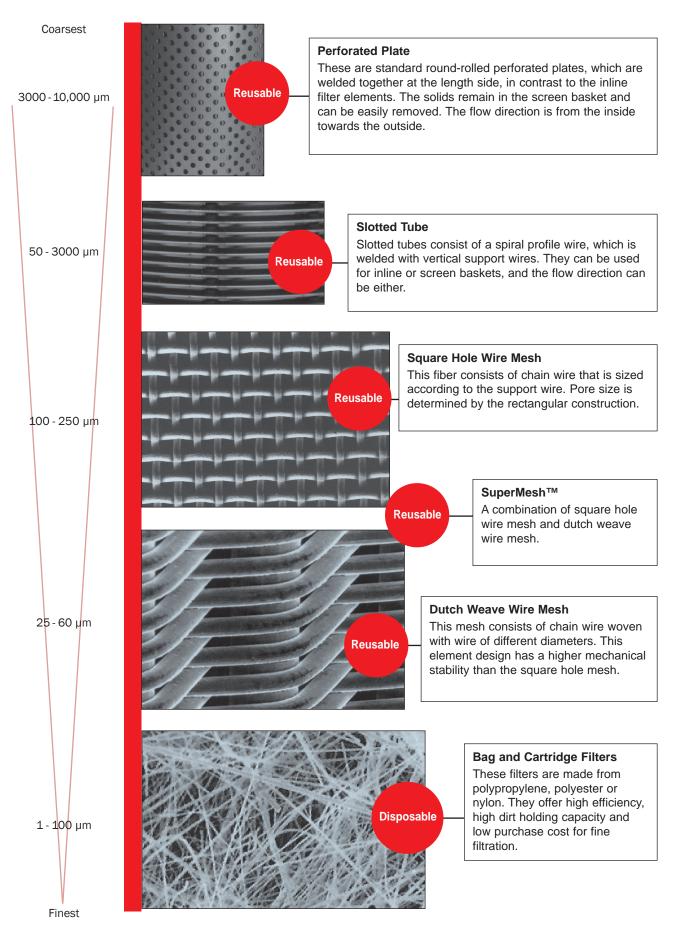
When considering a Schroeder Process Filter for your application, you can select from three basic designs:

- 1. Backflush Filters (automatic and manual) Backflushing filters cover a wide range of flows and filtration ratings. Some are automatic using electronics and pneumatics controlled by a PLC-based panel. Others require an operator to manually back-flush the filter. The elements in each of the backflush filters are reusable.
- Bag Filter Systems These filter housings come standard sizes 1, 2, 3 and 4. Size 2 multi-bag housings are available for higher flow applications. The filter bags are disposable and available in many types of felt and mesh. They are suitable for coarse and fine filtration.
- Cartridge Filter Systems Cartridge elements utilize depth filtration to increase dirt holding capacity while offering efficient filtration. The elements are well suited for fine filtration. Housings for these elements are available in polypropylene for single cartridges and stainless steel for multiple cartridges.

There are eight (8) main considerations in choosing the proper filter housing:

1. Fluid Compatibility – How will the materials of construction and seals for both the housing and element withstand the process medium?

Materials of Construction


- a. Housing Construction Carbon steel, stainless steel, polypropylene, brass and more.
- b. Seals Buna, EPDM, Viton, Teflon[®] (a registered trademark of DuPont Dow Elastomers) and more.
- c. Filter Elements Please see Element Selection Guide and Technical Data Section (page 6) for more detailed information.
- 2. Pressure Rating The maximum sustainable working pressure of the system.
- 3. Pressure Drop (loss) How important is maintaining pressure rating and heat generation in the system?
- 4. Process Connection Size The process piping and specific requirements of the system determine these criteria.
- 5. Filter Element Options What is the desired pore size of the element and the requirements of the system (please see Filter Element Selection)?
- 6. Overall Efficiency Based on filter element selection.
- 7. Accessories Gauges, system monitoring, control panels.
- 8. Economic Considerations

The model numbering selection chart on each product spread will provide an easy method to fully define the product you need for your specific application.

The information provided in this section is for reference only, and should be used as a guide when selecting the proper filters, elements, materials of construction and determining fluid compatibility. For your specific application, contact Schroeder Industries at www.schroederindustries.com, by phone at 724.318.1100 or fax at 724.318.1200.

Filter Housing Selection

Element Selection Guide

Element Selection Guide

The fundamentals of filter element selection will focus upon the type of fluid you are filtering and what filtration level you require.

In some cases, basic filtration is required when coarse materials in the fluid are to be removed. In other instances, extremely fine filtration may be needed for the specific process or equipment within the system.

There are two classes of filter elements:

- 1. Reusable
- 2. Disposable

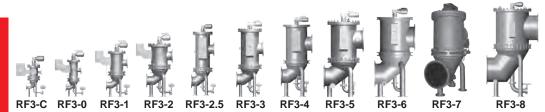
Once again, we set the standard for environmental stewardship with reusable filter elements. When choosing the proper filter element, you now have a choice not only based on filtration requirements, but on the materials of construction and the possibility of environmental impact. As you begin the selection process for filters and filter elements, you will be able to add to your criteria whether a disposable or reusable element suits your application best. Consideration should be given to all of the environmental consequences, and we urge you to contact our application engineers during the selection process.

Reusable Elements

Designed to allow the user to replenish the media through cleaning, these elements utilize metallic media for long-term usage. Reusable elements are easily cleaned. In some cases, "intelligence" is built into the filter housing and through an internal process, the filter performs the cleaning process itself. This feature is the benchmark of the RF3 backflushing products.

Disposable Elements

Our disposable bag and cartridge elements are manufactured from polypropylene, polyester, nylon and other low cost durable materials. They are engineered to offer high dirt holding capacity and high efficiency at an economical price. These elements are reliable and are used for fine filtration.


The graphical representation on the previous page demonstrates five differing element types and their corresponding micronic range. This is critical to selecting the level of cleaning required in your system. It is important to select the medium that is appropriate to your application. There are dangers in both undersizing and oversizing of the element. Selecting a pore size too large can have adverse effects on your process or the equipment you are trying to protect. Selecting a pore size smaller than your requirements will add unnecessary protection and introduce pressure drop and heat that may affect your process. If you are unsure of your specific requirements, please contact our application engineers for assistance. The filter model number selection chart on each product spread will provide an easy method to fully define the product you need for your specific application.

Filter Element Selection

Notes Section:	

Automatic Backflushing Filters

The RF3 Automatic Backflushing Filters are complete filtration systems. These unique products are not only performing the task of filtering low viscosity liquids, but also the cleaning of their array of reusable conical filter elements via PLC controlled mechanism.

Since particles in process fluids have an influence on the quality of the end product and they increase the attrition rate of system components, proper protection through efficient filtration is needed. The RF3 self-cleaning filters provide this protection with uninterrupted operation.

The RF3 automatic self-cleaning filters are used for extracting particulate contaminants. The rugged design and automatic self-cleaning capability give this filter product the ability to make a major contribution to operational reliability, reduction of maintenance costs and overall efficiency in many process systems.

The RF3 filters have a special housing design that incorporates an array of filter elements. The special Slotted Tube and SuperMesh[™] elements with pore sizes from 25 to 3000 micron ensure highly effective removal of particulate contamination from the process medium. The adjustable differential pressure switch triggers the self-cleaning function. Each individual filter element is cleaned with filtrate in the reverse flow direction while being totally isolated from the rest of the element array. This is how the RF3 can continue to filter without any interruption of the filtration process during the backflush cycle.

The RF3 filters are a relatively simple mechanical design as illustrated here. Pre-filtered liquid enters the inlet port and exits through the outlet port after passing through the conical element array. The flow direction of the elements is from inside out, and particles are collected on the smooth interior surfaces for easy cleaning. As the level of contamination increases, so does the differential pressure across the filter.

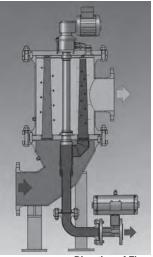
When does the self-cleaning function occur?

As the amount of contamination collected in the elements increases, so does the differential pressure. When the differential pressure reaches the set point, a signal is sent to the PLC inside the control panel, which initiates the backflush cycle. The cleaning cycle can also be started by the adjustable timer located inside the control panel, or by simply pressing the cycle start button located on the front of the control panel.

How does the self-cleaning system operate?

The process starts with the geared motor located on top of the filter positioning the backflush arm beneath the first element to be cleaned. Once in position, the control panel opens the backflush valve, which creates a pressure gradient that reverses the flow of filtrate through this single element. The reverse flow cleans the element of the collected particles. The valve then closes and the motor positions the arm beneath the next element to be cleaned. The backflush cycle is complete when all of the elements in the array have been cleaned.

What about the filter elements?

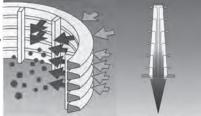

The conical shaped filter elements used in the RF3 self-cleaning filters are specially designed for isokinetic filtering and backflushing. This tapered design results in an even flow distribution, low pressure drop and a uniform distribution of contaminate inside the elements. The advantages: longer time between backflush cycles, less loss of process fluid and more complete and efficient cleaning of the conical wedge wire elements.

Are there any other unique features?


The PLC control has some benefits that aren't immediately visible. During the self-cleaning operation, the backflush valve is in position under the element being cleaned for just a few seconds. The backflush valve is opened and closed rapidly, causing a "pulsation of filtrate through the filter element

openings. These pressure surges produce a superior cleaning effect in a shorter time. The result is fewer cleaning cycles,

shorter duration and lower consumption of filtrate.



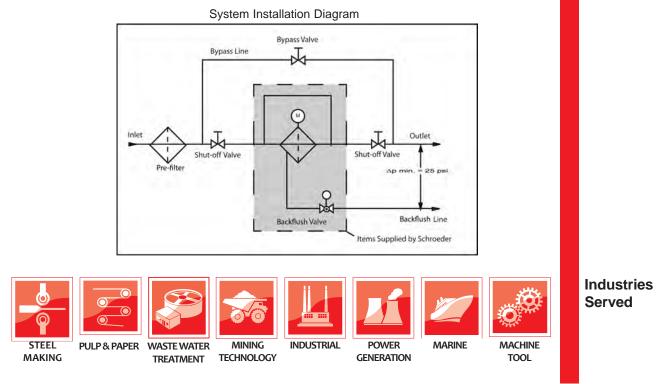
Direction of Flow

Backflush Mode

Filtration Mode

Automatic Backflushing Filters

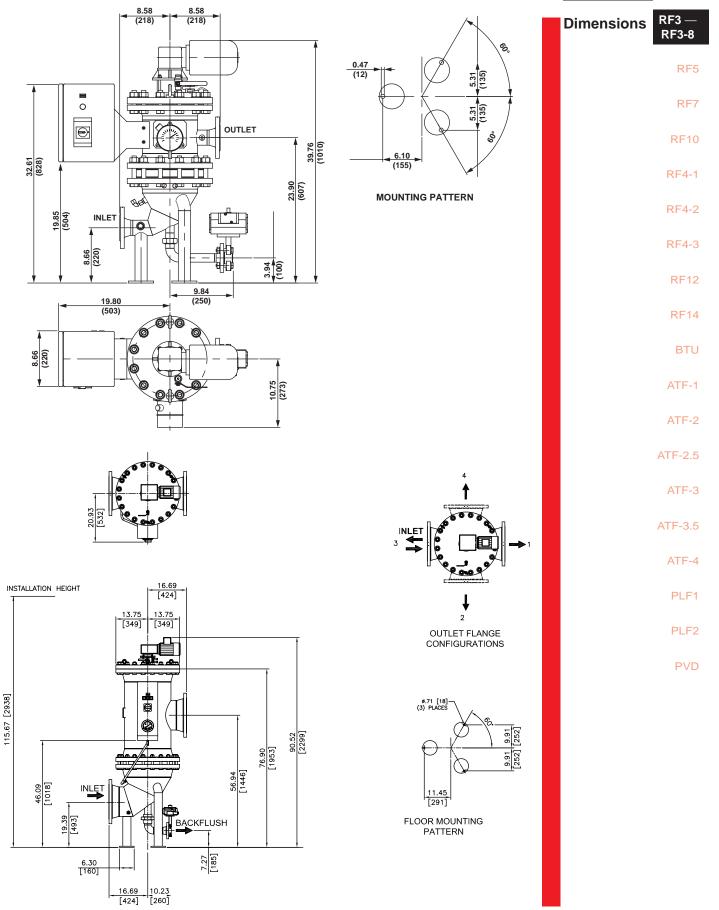
Some of the RF3 Benefits:


- Excellent price to performance ratio
- High filtration quality
- Low occurrence of service staff intervention
- Low operating cost
- Low maintenance cost
- Continuous operation of process
- High flow rate for maximum performance
- Low pressure drop
- Low energy consumption
- Superior self-cleaning functionality
- Application specific design
- Efficient design / small footprint envelope
- Simple installation
- Maximum use of filtration surfaces for best efficiency
- Patented element design
- 25 to 3000 micron filtration

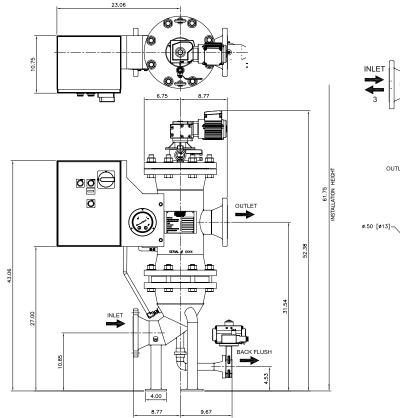
Filter Elements

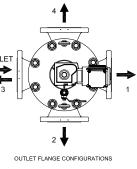
Installation Guidelines

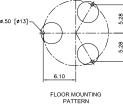
- Minimum inlet pressure of 35 psi
- Maximum 2 psi clean pressure differential between inlet and outlet
- Minimum 25 psi between the outlet and the backflush line (preferably the backflush line goes to atmospheric pressure)

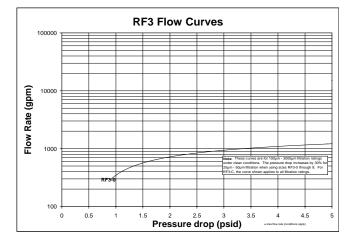

Automatic Backflushing Filters

Specifications


2.1. STANDARD CC	ONFIGURATIONS	ASME Code Design (with or without U-Stamp)
2.1.1 Control Parameters	2.1.9 Internal Corrosion Protection	2.2.3 Flange Connections
EPT: electro-pneumatic cyclic control	• 2K epoxy paint	• ANSI
 EU: electrical circulation control (electric only) 	2K polyurethane coating	• JIS
 PT: pneumatic cyclic control with timer function (pneumatic only) 	• rubber lined	2.2.4 Housing Materials
2.1.2 Connection Voltages	2.1.10 Differential Pressure Gauge	• Duplex
• 3 x 400V / 50 Hz with or without neutral wire	• Aluminum	Superduplex
• 3 x 500V / 50 Hz without neutral wire	Stainless steel	 Various qualities of stainless steel
• 3 x 230V / 50 Hz with or without neutral wire	• Brass	2.2.5 Cover Plate Lifting Device
• 3 x 415V / 50 Hz without neutral wire	Chemical seal	Carbon steel
• 3 x 415V / 60 Hz with neutral wire	2.1.11 Filtration Ratings	Stainless Steel
• 3 x 460V / 60 Hz without neutral wire	• 25 μm, 40 μm and 60 μm Super Mesh	Cover plate lifting device for retrofitting
• 3 x 440V / 60 Hz without neutral wire	• 50 µm to 3000 µm slotted tube	2.2.6 Material of Internal Parts and Elements
• 3 x 525V / 50 Hz without neutral wire	2.1.12 Electrical Protection Class	• Duplex
• 3 x 575V / 60 Hz without neutral wire	• IP55	Superduplex
• 3 x 690V / 50 Hz without neutral wire	2.1.13 Pressure Ranges	 Various qualities of stainless steel
• 1 x 230V / 50 Hz	• 6 bar	 Elements with magnetic filtration technology
• 1 x 230V / 60 Hz	• 10 bar	Superflush element technology
• 1 x 115 • / 60 Hz	• 16 bar	2.2.7 External Corrosion Protection
2.1.3 Housing Calculation / Flange Connections	• 25 bar	Multiple layer coatings
AD 2000 / PED 97/23/EC Pressure Equipment Directive	• 40 bar	 Special paints / coatings for offshore use
DIN flanges	• 64 bar (on request)	Colors to customer specification
2.1.4 Variable Flange Geometry	• 100 bar (on request)	2.2.8 Internal Corrosion Protection
Inlet/outlet and backflushing line, rotatable	2.2 OPTIONAL VERSIONS There are a range of optional versions available for the AutoFilt [®] RF3.	• Glass flake lining
2.1.5 Housing Materials	2.2.1 Control / Electrical Components / Voltage Supply	 Special paints / coatings according to customer specifications
• Carbon steel	Manual version of the AutoFilt® RF3	2.2.9 Explosion Protection
Cast iron (only for sizes CG and DG)	PLC control	ATEX accprdomg to Directive 94/9/EC
Stainless steel	 Filter without control for integration into customer's PLC 	2.2.10 Documentation
2.1.6 Material of Internal Parts	Filter interlocking for parallel operation	Manufacturer's test certificates
Stainless steel	 UL/CSA approved controls and components 	Material certificates 3.1 according to DIN EN 10204
2.1.7 Material of Elements	Special IP protection classes	GOST certificate
Stainless steel	 Safe in tropical conditions 	• 3rd parties (TÜV, ABS, Lloyds, etc.)
2.1.8 External Corrosion Protection	Customized special solutions	Welding procedure specifications (WPS) / Procedure Qualification Record (PQR)
2-coat primer (not required for stainless steel housing)	2.2.2 Housing Manufacture	Inspection plan
Many others available on request.		


Many others available on request. Futher optional models on request.


Backflushing Filter AutoFilt[®] RF3 RF3


RF3 Backflushing Filter AutoFilt[®] RF3

Pressure Drop Information Based on Flow Rate and Viscosity

Backflushing Filter AutoFilt® RF3 RF3

BOX 1 BOX 2	BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BO	X 8 BOX 9		Model Code RF3 – RF3-8
	ne option per box				RF5
BOX 1 BOX 2		BOX 6 BOX 7 BO	X 8 BOX 9		
RF3 2.5	2 S A	1 NM E	1 N Continued	d on next page	RF7
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	RF10
Туре	Filter Size	Pressure	Design Code	Controller	
AutoFilt®	C = C [2'' (232 psi)] 0 = F [4'' (145 psi)]	Ranges	S = HYDAC Standard	$A = \frac{\text{Electro-pneumatic cyclic}}{\text{control}}$	RF4-1
	1 = K [6" (145 psi)] 2 = L [8" (145 psi)]	2 = 145 psi 3 = 232 psi	A = ASME VIII Div. 1 U = ASME VIII Div. 1	B = Electrical circulation control C = Electro-pneumatic	RF4-2
	2.5 = M [10" (145 psi)] 3 = N [12" (145 psi)]	4 = 363 psi 5 = 580 psi	E = EN 13445	$D = \begin{cases} c & circulation control \\ Pneumatic cyclic control \\ with timer function \end{cases}$	RF4-3
	4 = Q [16" (87 psi)] 5 = R [20" (87 psi)]	6 = 914 psi 7 = 1450 psi		M = Manual Without control, all	RF12
	6 = S [24" (87 psi)] 7 = T [28" (87 psi)]	,		consumers on terminal strip	RF14
BOX	8 = U [36" (87 psi)]		BOX 7		BTU
Connection		Housing	Material / Corro	sion Protection	ATF-1
1 = 3 x 400V / N			on the outside (RAL 704		AIT-
2 = 3 x 400V / X	(/ PE 50Hz NM = C	arbon steel, primed	on the outside (RAL 704)	0), inside 2-comp. epoxy coating	ATF-2
$3 = 3 \times 500 \text{V} / \text{A}$	(/ PE 50Hz) NP = C	arbon steel, primed	on the outside (RAL 704)	0), inside 2-comp highly cross-linked	
$4 = 3 \times 230 \text{V/N}$ $5 = 3 \times 230 \text{V/N}$			on the outside (RAL 704		ATF-2.
$5 = 3 \times 415 \text{V}/\text{X}$			1, 1.4541 or similar (group		
$7 = 3 \times 415 \text{V/N}$			1 or similar (group 316)	5 50 - 52 1)	ATF-
$3 = 3 \times 460 \text{V} / \text{X}$		A" also added in ca			
9 = 3 x 440V / X		I" also added in ca	5		ATF-3.
$A = 3 \times 525 V / X$			BOX 8		
$B = 3 \times 575 V / X$	K / PE 60Hz	1		Matarial	ATF-
$C = 3 \times 690 \text{V} / \text{X}$			nternals/Element		
$D = 1 \times 230 V / N$		ainless steel 1.4301, 1435 (group 316)	, 1.4541 or similar (group 3	304/321), filter element stainless steel	PLF
$E = 1 \times 230 V / N$ $F = 1 \times 115 V / N$	N / PE 60Hz $E2 = \frac{Sta}{(ar}$		or similar (group 316), fil	ter element stainless steel 1.4435	PLF2
$3 = 3 \times 415 \text{V/N}$ $4 = 3 \times 220 \text{V/N}$	N / PE 50Hz		or similar (group 316), fil	ter element Superduplex (only wedge	PVE
$I = 3 \times 380 V / X$	SE = SU	perduplex, filter ele	ement stainless steel 1.443	35 (group 316)	
$K = 3 \times 480 V / X$	(/ PE 60Hz DE = Du	iplex, filter element	stainless steel 1.4435 (gr	oup 316)	
		•	: Superduplex (only wedge		
			ement Superduplex (only v		
		BO	X 9		
					NOTES:
N		Back-Flu	sn valve		Box 3. Needs to have control type
= None	and a line of the	dan dana si ka ka ka			and voltage selected ex.
	coated in spheroidal graph		-		EPT8.
	coated in spheroidal grapl coated in spheroidal grapl				Box 4. can contain two options

- M = Flap: housing coated in spheroidal graphite iron, disc Superduplex, seal NBR (only up to pmax \leq 16 bar!)
- S = Ball valve: ball stainless steel, housing up to a nominal size of 50 mm carbon steel and from a nominal size of 50 mm carbon steel and from a nominal size of 50 mm carbon steel in spheroidal graphite iron, ball seal PTFE (from pmax > 16 bar!)
- E = Ball valve: ball stainless steel, housing stainless steel, ball seal PTFE (from pmax > 16 bar!)

SCHROEDER INDUSTRIES | PROCESS FILTRATION

17

ex. NMA. If ANSI

flanges are not specified DIN style will be provided.

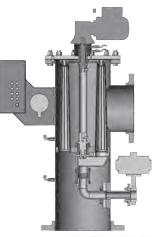
Note.

RF3 Backflushing Filter AutoFilt[®] RF3

continued)	5 Example: NOTE: One option per box				
	$\begin{bmatrix} BOX 10 & BOX 11 & BOX 12 & BOX 13 & BOX 14 \\ 5 & 1 & 0 & 3 & SKS1000 & = RF3-2.5N2SA1N \\ \hline \end{bmatrix}$	IME1N5103-SKS1000			
	BOX 10	BOX 11			
	Pressure Gauge	Flange Position			
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	r outlet opposite filter inlet (Standard) r outlet offset 90° clockwise to default r outlet offset 180° clockwise to default r outlet offset 270° clockwise to default			
	3 = Differential pressure gauge – with stainless steel 1.4301 or similar (group 304/321) diaphragm seal Differential pressure gauge – brass pressure	BOX 12			
	4 = chamber	Options			
	5 = HDA 4700 stainless steel V2A group0 = Non6 = HDA 4300 DuplexCert				
	BOX 13 Modification Number to D	ificate of conformance CoC 3.1 ording to DIN EN 10204 for design, sure and functional testing eptance test certificate 3.1 according IN EN 10204 for design, pressure and			
	3 = The latest number will be supplied	tional testing incl. material inspection ficates according to EN 10204, 3.1 for sure-bearing media-contacting housing			
	Mat	erial inspection certificates according to			
	$KS = \begin{array}{c} Conical Wedge wire filter elements (50 - 3000 \\ \mu m) \\ Conical SuperMesh filter elements (25/40/60 \\ E = letter$	10204, 3.1 for pressure-bearing media- tacting housing parts sian equipment pass incl. explanation er for TRCU 032 / 2013; also declaration			
	$KD = \mu m$) SKS = Conical wedge wire filter elements with $F = End back$	onformity for TRCU 010 / 2011 position switch position indicator for c-flushing valve (micro)			
	$SKD = \frac{Conical SuperMesh filter elements with}{SuperFlush Coating} H = RAL$	position switch position indicator for -flushing valve (inductive) 7040 top coat			
	BOX 14 I = Davi K = Auto	omatic vent valve			
	Special number	HMW clutch bushing with FKM O-rings x 1 male connector for electrical			
	(number is allocated after technical clarification) $N = \frac{Drinl}{372}$	nections king water approval NSF / ANSI 61-G &			
	S = Seav	eals FKM or FP2000 vater version ne / ship version			

Notes Section:

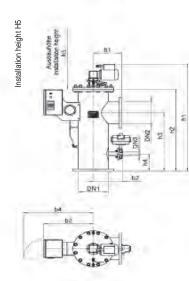
Backflushing Filter AutoFilt® RF5

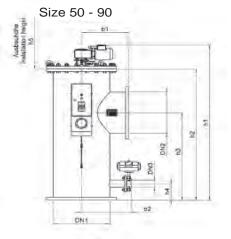

748-18,480 gpm 170-4200 L/min

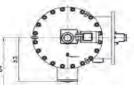
87-150 psi 6-10 bar

The automatic backflushing filter AutoFilt[®] RF5 has proven its reliable performance successfully for many years in a wide range of different industries. The new backflushing filter series AutoFilt[®] RF5 a new budget-priced filter series with a cost-optimized geometry that offers the same reliable filter performance in a variety of applications.

Installation height H5




The function of the AutoFilt $^{\otimes}\,$ RF5 is similar to the AutoFilt $^{\otimes}\,$ RF3:


The fluid to be filtered flows through the slotted tube filter elements of the backflushing filter, passing from the inside to the outside. Contamination particles then collect on the smooth inside of the filter elements.

As the level of contamination increases, the differential pressure between the contaminated and clean sides of the filter increases. When the differential pressure reaches its pre-set value, backflushing starts automatically.

Size 25 - 40

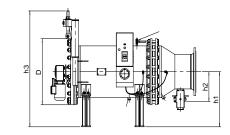
Dimensions

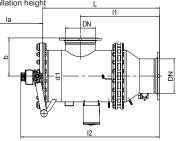
Size	DN1 in (mm)	DN2 in (mm)	DN3 in (mm)	H1 in (mm)	H2 in (mm)	H3 in (mm)	H4 in (mm)	H5 in (mm)	B1 in (mm)	B2 in (mm)	B3 in (mm)	B4 in (mm)
25	9.8 (250)	7.9 (200)	1.6 (40)	47.7 (1212.5)	35.9 (912.5)	24.6 (625)	7.1 (180)	21.7 (550)	11.8 (300)	10.8 (275)	20 (508)	28.7 (728
30	11.8 (300)	9.8 (250)	1.6 (40)	51.7 (1313.5)	39.4 (1001.5)	28.1 (715)	8.3 (210)	21.7 (550)	11.8 (300)	12.4 (314)	21 (533)	29.6 (753)
40	15.7 (400)	11.8 (300)	2.6 (65)	74.4 (1890.5)	62 (1575.5)	40.6 (1030)	7.1 (180)	41.3 (1050)	14.6 (370)	15 (380)	23 (575)	31.3 (795)
50	19.7 (500)	15.7 (400)	2.6 (65)	74.4 (1888.5)	62.4 (1585.5)	41.3 (1050)	7.5 (190)	41.3 (1050)	17.16 (435)	17.3 (440)	19.1 (485)	27.8 (705)
60	23.6 (600)	19.7 (500)	3.1 (80)	75 (1905.5)	63.3 (1608.5)	42.1 (1070)	7.9 (200)	41.3 (1050)	19.9 (505)	21 (534)	21.3 (540)	29.9 (760)
70	27.6 (700)	23.6 (600)	3.1 (80)	88.1 (2238.5)	74.5 (1903.5)	48.6 (1235)	7.9 (200)	53.1 (1350)	22.4 (570)	22.8 (580)	23.3 (593)	32 (813)
90	35.4 (900)	31.5 (800)	3.9 (100)	91.7 (2328.5)	78.5 (1993.5)	52.2 (1325)	8.9 (225)	53.1 (1350)	27.2 (690)	27.2 (690)	27.5 (698)	36.1 (918)

Backflushing Filter AutoFilt® RF5 RF5

	Size	Pressure psi / (b		Inlet	Outlet	Bao flush		Filtration Area in ² / cm ²	Flow Range gpm (L/min.)	Technical Data	RF3 — RF3-8
	25	145 (10)		DN 250	DN 200	DN	40	942 (6120)	748-1408 (170-320)		RF5
	30	145 (10)		DN 300	DN 250	DN	40	1255 (8160)	1276-1980 (290-450)		RF7
	40	87 (6)		DN 400	DN 300	DN	65	2603 (16920)	1760-3302 (6667-12500)		DEta
	50	87 (6)		DN 500	DN 400	DN	65	3905 (25380)	2860-5280 (650-1200)		RF10
	60	87 (6)		DN 600	DN 500	DN	80	7809 (50760)	4400-8360 (1000-1900)		RF4-1
	70	87 (6)		DN 700	DN 600	DN	80	10920 (70980)	6600-12320 (1500-2800)		RF4-2
	90	87 (6)		DN 900	DN 800	DN 1	100	18200 (118300)	11440-18480 (2600-4200)		RF4-3
	Build a Valid									Filter	
BOX 1 RF5	BOX 2 BOX		BOX 5 B	OX 6 BOX 7 BC	DX 8 BOX 9	9 BOX 10	BOX 1	1		Model	RF12
Example BOX 1	BOX 2 BOX	<u> </u>		OX 6 BOX 7 BO	DX 8 BOX 9	9 BOX 10	BOX 1			Selection	RF14
RF5	40 EPT	NMA	Ν	5 3	2 ES30	0 40	ASⅣ		PT8-NMA- S1000-40-ASME		BTU
	^{30X 1} r Series	BOX 2		вох з Drive Cont				aterial &	BOX 5 Shut Off		ATF-1
	RF5	25		nnecting V Electric pneur		Star	Coati	ng teel outside	Valve Material		ATF-2
]	30	EPZ =	 control Electric Control 	h	prin	ned	teel outside	N = Standard Steel		ATF-2.5
		40	EPT =	_ Electro-pneun			ned, ins	ide metallogal	B = Bronze		ATF-3
		50	PT =	 control Pneumatic cyc 	lic control	E = Stai		eel			
		60		Pneumatic cyc control			n ANSI-f itional A	langed, A at the end			ATF-3.5
		70		= 3X415V/N/PE				BC	9 X 9		ATF-4
		90		= 3X460V/X/PE = 3X440V/X/PE					nt Set		PLF1
	BOX 6			= 1X230V/N/PE					0μ Conical otted Tubes		
	ifferentia ssure Gau		F=	= 1X110V/N/PE	60Hz				0μ Conical otted Tubes		PLF2
	Pressure Cham Aluminum 3.25			ox 7 rol Box	Мо	вох в dificatio	n		0µ Conical otted Tubes		PVD
2 - P	Pressure Cham	ber	Pos	sition	Ν	lumber			0µ Conical otted Tubes		
~_ V	Stainless Steel Nith Chemical	Seal		ol box offset by ockwise to filter		atest version applied by fa			00µ Conical otted Tubes		
5 = ^H	itainless Steel IDA 4700 Stai	inless	Contr	ol box offset				$E_{\rm ES1500} = 15$	00µ Conical otted Tubes	NOTES:	
6 - H	iteel IDA 4300 Dup		filter	0° clockwise to outlet				FS2000 - 20	00µ Conical	Box 3. Needs to have contr type and	ol
0 - S	stainless Steel	3		ol box offset 0° clockwise to outlet				$E_{52500} = 25$	00µ Conical	voltage selected ex EPT8.	x.
	BOX 10	L		BOX 11				Sic 510	otted Tubes 00µ Conical	Box 4. can contain two options	
Size	of Elemer	nt Set	Vess	el Certifica	tion			Slo	otted Tubes	ex. NMA. note. If ANSI flanges are	e
San	ne as BOX 2 V	/alue		Standard Versio ASME Version	n					not specific DIN style v be provide	ed vill

Backflushing Filter AutoFilt® RF7


83-33,022 gpm 22-12,501 L/min


87-232 psi 6-18 bar

The automatic backflushing filter AutoFilt® RF3 has proven its reliable performance successfully for many years in a wide range of different industries. The horizontal backflushing filter AutoFilt® RF7 supplements our backflushing filter family. The AutoFilt® RF7 is a compact model range that is specifically designed for applications with small space and height restrictions.

The working principle and control systems of the AutoFilt® RF7 are identical to those of the AutoFilt® RF3. Installation height

Dimensions

Size	DN in (mm)	DN1 in (mm)	l1 in (mm)	b in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	D in (mm)	d1 in (mm)	L in (mm)	l2 in (mm)	G1 in (mm)	G2 in (mm)	la in (mm)
СС	2 (50)	1 (25)	19.8 (504)	7.9 (200)	14.2 (360)	4.7 (120)	25.6 (650)	13.4 (340)	8.7 (220)	25 (635)	35.1 (892)	G1/4	G1/2	21.7 (550)
0B	3.9 (100)	1 (25)	23.5 (596)	7.9 (200)	15.2 (385)	5.9 (150)	27 (685)	13.4 (340)	8.7 (220)	33.5 (850)	45.9 (1165)	G1/4	G1/2	21.7 (550)
1B	5.9 (150)	1.6 (40)	25.5 (647)	10.6 (270)	17.7 (450)	7.4 (189)	31.7 (805)	17.5 (445)	12.8 (324)	35.4 (900)	47.8 (1215)	G1/4	G3/4	21.7 (550)
2B	7.9 (200)	2 (50)	30.1 (764)	12.8 (325)	19.7 (500)	8.6 (220)	39.4 (1000)	22.2 (565)	16 (406)	40.2 (1020)	52.6 (1335)	G1/4	G3/4	27.6 (700)
2.5B	9.8 (250)	2 (50)	40.3 (1024)	12.8 (325)	19.7 (500)	10.2 (260)	39.4 (1000)	22.2 (565)	16 (406)	58.3 (1480)	69.7 (1770)	G1/4	G3/4	27.6 (700)
3B	11.8 (300)	2.6 (65)	41.02 (1042)	15 (380)	23.2 (590)	11.02 (280)	47.2 (1200)	26.4 (670)	20 (508)	61.02 (1550)	72.8 (1848)	G1/4	G3/4	27.6 (700)
4A	15.7 (400)	3.1 (80)	42.1 (1069)	17.7 (450)	25.6 (650)	13.8 (350)	55.1 (1400)	30.7 (780)	24 (610)	62.05 (1576)	73.7 (1873)	G1/4	G3/4	27.6 (700)
5A	19.7 (500)	3.1 (80)	44.8 (1139)	21.7 (550)	29.5 (750)	14.6 (370)	62 (1575)	35.2 (895)	28 (711)	62.4 (1585)	75.6 (1920)	G1/4	1.5" Flange	27.6 (700)
6A	23.6 (600)	3.9 (100)	45.6 (1159)	24.6 (625)	33.1 (840)	18.7 (475)	68.9 (1750)	43.9 (1115)	36 (914)	66.5 (1690)	80.6 (2046)	G1/4	1.5" Flange	27.6 (700)
7A	27.6 (700)	3.9 (100)	47.2 (1200)	29.5 (750)	35.04 (890)	20.1 (510)	74.8 (1900)	48.4 (1230)	40 (1016)	58.1 (1475)	72 (1830)	G1/4	1.5" Flange	27.6 (700)
8A	3.5 (90)	5.9 (150)	58.0 (1474)	37.4 (950)	43.3 (1100)	24.4 (620)	88.6 (2250)	55.3 (1405)	48.03 (1220)	83.2 (2114)	96.9 (2460)	G1/4	1.5" Flange	27.6 (700)

Technical Data

:	Size	Pressure Rating psi (bar)	Connection Inlet/Outlet	Connection Backflushing Line	Weight Empty Ibs (kg)	Volume Gallons (liters)	Amount of Filter Elements	Filter Area in ² (cm ²)	Backflushing Amount gal (liters)	gpm	Liters/ Minute
	сс	230 (16)	2" Flange	1" Flange	286 (130)	4 (15)	6	332 (2140)	6.6 (25)	22-124	83-469
	0B	150 (10)	4" Flange	1" Flange	342 (155)	7 (25)	6	590 (3810)	6.6 (25)	110-498	416-1885
	1B	150 (10)	6" Flange	1.5" Flange	550 (250)	16 (60)	6	960 (6190)	9.2 (35)	396-1118	1499-4232
	2B	150 (10)	8" Flange	2" Flange	825 (375)	28 (105)	8	1279 (8250)	13.2 (50)	880-1981	3331-7498
2	2.5B	150 (10)	10" Flange	2" Flange	1025 (465)	50 (190)	6	1938 (12500)	17.2 (65)	1761-2641	6666-9997
	3B	150 (10)	12" Flange	2.5" Flange	1290 (585)	74 (280)	9	2906 (18750)	25.1 (95)	2421-3786	9164-14331
	4A	87 (6)	16" Flange	3" Flange	1705 (775)	112 (425)	18	5813 (37500)	55.5 (210)	3566-7484	13498-28330
	5A	87 (6)	20" Flange	3" Flange	2290 (1040)	168 (635)	24	8643 (55760)	82 (310)	6604-10787	24998-40833
	6A	87 (6)	24" Flange	4" Flange	3635 (1650)	264 (998)	40	13811 (89100)	128.1 (485)	8805-15850	33330-59998
	7A	87 (6)	28" Flange	4" Flange	4410 (2000)	358 (1355)	44	16446 (106100)	147 (555)	13208-22014	49997-83332
	8A	87 (6)	36" Flange	6" Flange	7960 (3610)	716 (2710)	54	28009 (180700)	190.2 (720)	19813-33022	75000-125001

Backflushing Filter AutoFilt® RF7 RF7

BOX 1 BOX 2 BOX 3	BOX 4 BOX 5 BOX 6	BOX 7 BOX 8 BOX 9	BOX 10 BOX 11	RF3
				RI
Example: NOTE: One option BOX 1 BOX 2 BOX 3	BOX 4 BOX 5 BOX 6	BOX 7 BOX 8 BOX 9	BOX 10 BOX 11	
RF7 3B EPT7	NMA N 5	1A 2 KS10	3B ASME = RF7-3B-EPT8-N N-5-3-2/ KS1000	
			N-5-5-2/ K31000	
BOX 1	BOX 2	BOX 3	BOX 4	RF
Filter Series	Filter Size	Drive Contro		&
RF7	СС	Connecting Vo	tage Coating	DE4
	OB	$EPT = \begin{array}{c} Electro-pneumatic control, \Delta p dependence \\ Control, \Delta p dependence \\ Control \\ Con$	ndent $N = $ outside primed	8
	18	EU = Electric Control, dependent	∆p Standard Steel 1.0038	
BOX 5	2B	PT = Pneumatic cyclic	control metallogal	RF
Shut Off Valve Material		PTZ = Pneumatic cyclic	timed painted E = Stainless Steel 1.4571	
Butterfly housing	2.5	7 = 3X415V/N/PE 60	Hz with ANSI-flanged,	RF
N = SG cast iron coated, washer	3B	8 = 3X460V/X/PE 60 9 = 3X440V/X/PE 60		nd BT
stainless steel Butterfly housing	4A	F = 3X440V/X/PE 6000 E = 1X230V/N/PE 6000		
$B = \frac{SG \text{ cast iron}}{\text{coated, washer}}$	5A	F = 1X110V/N/PE 60	Hz	ATF
bronze	6A	BOX 7	BOX 8	ATF
BOX 6	7A	Flange Settin Backflushing L		
Differential	8A	Setting	Latest version	ATF-2
Pressure Gauge Pressure Chamber		1 = Outlet to right	2 = supplied by factory	ATF
1 = Aluminum 3.258302		2 = Outlet up		
Pressure Chamber 2 = Stainless Steel		3 = Outlet to left		ATF-3
1.4305		$A = \frac{\text{Backflushing line}}{\text{left}}$	το	ATF
3 = With Chemical Seal Stainless Steel 316T		$B = \frac{Backflushing}{downwards}$		
5 = HDA 4700 Stainless Steel		$C = \frac{Backflushing line}{right}$	to	PL
HDA 4300 Duplex	BO	(9	BOX 10 BOX 11	PL
^{o =} Stainless Steel	Eleme		Size of Vessel	P
		al SuparMach TM	ement Set Certificatio	on in the second se
	K40 = Conic		st letter/numbr	
	KS50 = Conica	al Slotted Tubes	only) ASME = ASME Vers	sion
	KS100 = Conica	al Slotted Tubes		
	KS200 = Conica	al Slotted Tubes		NOTED
	KS300 = Conica	al Slotted Tubes		NOTES: Box 3. Needs to
	KS400 = Conic	al Slotted Tubes		have control type and
	KS500 = Conica	al Slotted Tubes		voltage
	KS1000 = Conica	al Slotted Tubes		selected ex. EPT8.
	KS1500 = Conica	al Slotted Tubes		Box 4. can contain two options
	KS2000 = Conica	al Slotted Tubes		ex. NMA.
		al Slotted Tubes		note. If ANSI flanges are
				not specified

Backflushing Filter AutoFilt® RF10

Traditional Automatic Backwash Filters are designed for high pressure applications with medium to lower loads.

What if pressure is low and contamination is high?

The new RF10 takes the best features of the RF3 and marries them with JetFlush technology. The operating principle subdivides the backflushing into two phases.

Phase One:

Stripping away the contaminant particles

Phase Two:

Discharging the contaminant particles

The new generation is dependent on influent pressure only and does not require the additional back pressure of the effluent to influent differential. With a JetFlush reservoir and internally guided JetFlush valves that can seal the upper lip creating an increased "suction" backflush, the RF10 can handle almost all difficult filtration applications.

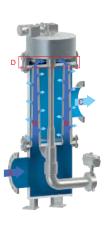
Product Advantages:

- Back-flushing independent of pressure on clean side of filter
- Dependent only on the inlet pressure
- Highly efficient back-flushing with low pressure conditions and long back-flush lines
- With its highly efficient back-flushing, the filter is suitable for high dirt loads and surges in contamination
- Optional davit
- Variable filter isometry

Here is how the JetFlush Technology improves traditional ABF Technology:

Filtration

The medium being filtered enters the filter housing via the filter inlet (A) and flows through the filter elements of the back-flushing filter from the inside to the outside (B) and leaves the filter via the filter outlet (C). During the filtration process, the JetFlush reservoir (D) located above the filter elements fills with and stores medium from the contaminated side. As fluid is filtered, particles collect on the inside of the filter elements. As the level of contamination increases, the differential pressure between the contaminated and clean side of the filter increases. When the differential pressure reaches the pre-set trigger point, back-flushing starts automatically.


Back-Flushing In General

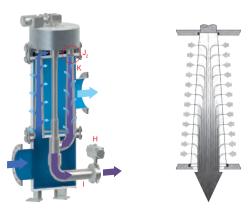
Automatic back-flushing is triggered:

- When the differential pressure trigger point is exceeded
- By means of a timer
- By pressing the test button

The gear motor (E) rotates the back-flushing arm (F) to the filter element to be cleaned (G). The back-flush valve (H) opens. The pressure drop between the filter inlet (A) and the back-flush line (I), combined with the conical geometry of the filter element, triggers the special JetFlush effect of the AutoFilt® RF10.

The remaining filter elements continue filtering to ensure uninterrupted filtration.

Back-flushing (phase 1)



Backflushing Filter AutoFilt® RF10

Back-Flushing Phase I

Phase 1 - Strupping away the contamination

In the first phase, unfiltered fluid from the JetFlush reservoir (J1) above flows into the filter element. The conical filter element geometry produces a core flow here, supplied mainly by the JetFlush reservoir. This core flow is supported by the open JetFlush effect, which also draws water from the filtrate side into the inside of the filter element.

Back-Flushing Phase II

Phase 2 - Discharging the contamination Once the core flow has developed, the JetFlush reservoir located above the filter element is closed (J2).

When the opening at the top of the filter element closes, the second phase is initiated, namely discharging the contamination:

The moving column of fluid draws water from the filtrate side (K) as soon as the fluid supply stops as a result of the filter element closing at the top.

The conical filter element geometry ensures the whole surface of the filter element is now clean and residue-free. The contamination is discharged via the back-flush line (I). After cleaning the filter element, the back-flushing arm rotates to the next filter element to be cleaned; the process is repeated. When the back-flush cycle is finished, the back-flush valve is closed (H).

MARINE

Industries Served

MAKING

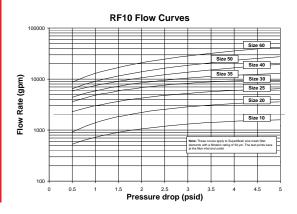
PULP & PAPER

WASTE WATER

TREATMENT

INDUSTRIAL

POWER GENERATION



RF10 Backflushing Filter AutoFilt[®] RF10

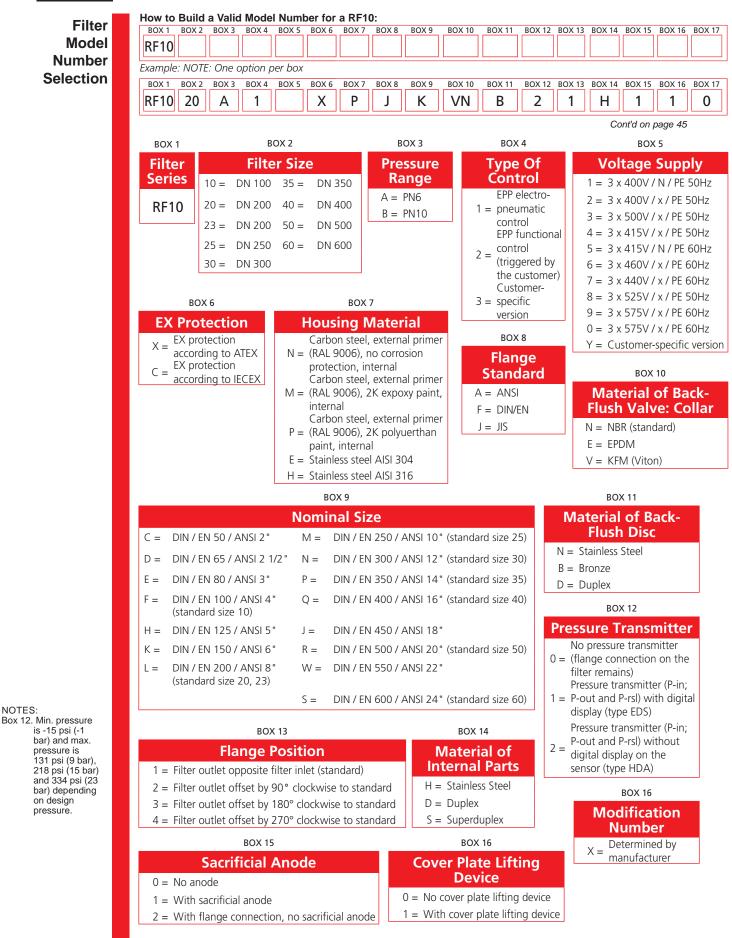
	b1 b2	
Dimensions		gear motor 5 ≧ ∞ Infra Vent
		gear motor gear gear gear gear gear gear gear gea
	a mi mi mi mi mi mi mi mi	
	11 I	
	Una a a a a a	Y Z pressure sensor
	Z	pressure 2 connection piece
	The state	sensor for sacrificial anode optional / depend-
	2	ing on version
	5	
		back-flush valve
	0D1	drain
	6 DHA	x-x
	0000	
	4	
		F1
	m 1	
Specifications	Filter Sizes:	10, 20, 23, 25, 30, 35, 40, 50, 60
	Flow Range:	2210-12,940 gpm (580-3420 L/min)
	Working Pressure:	87 psi (6 bar)
	Max. Working Temperature:	131°F (55°C)
	Empty Weight:	10 - 624 lbs. (283 kg), 20 - 981 lbs. (445 kg), 23 - 1021 lbs. (463 kg), 25 - 1213 lbs. (550 kg), 30 - 1560 lbs. (725 kg), 35 - 1934 lbs. (877 kg), 40 - 2619 lbs. (1188 kg), 50 - 2985 lbs. (1354 kg),
		60 - 5644 lbs. (2560 kg)
	Housing Volume:	10 - 10 gallons (36 L), 20 - 25 gallons (95 L), 23 - 35 gallons (131 L), 25 - 42 gallons (160 L), 30 - 80 gallons (304 L), 35 - 119 gallons (452 L), 40 - 163 gallons (616 L),
		50 - 235 gallons (891 L), 60 - 393 gallons (1489 L)
	Filter Area:	10 - 558 in.² (3,600 cm²), 20 - 1,105 in.² (7,128 cm²), 23 - 1,868 in.² (12,050 cm²), 25 - 2,241 in.² (14,460 cm²), 30 - 3,362 in.² (21,690 cm²), 35 - 4,109 in.² (26,510 cm²),
		40 - 6,724 in. ² (43,380 cm ²), $50 - 8,965$ in. ² (57,840 cm ²), $60 - 14,942$ in. ² (96,400 cm ²)
	No. of Filter Elements	Contact Factory
	Backflush Flange Size:	Contact Factory
	Backflush Volume:	Contact Factory

Pressure Drop Information Based on Flow Rate and Viscosity

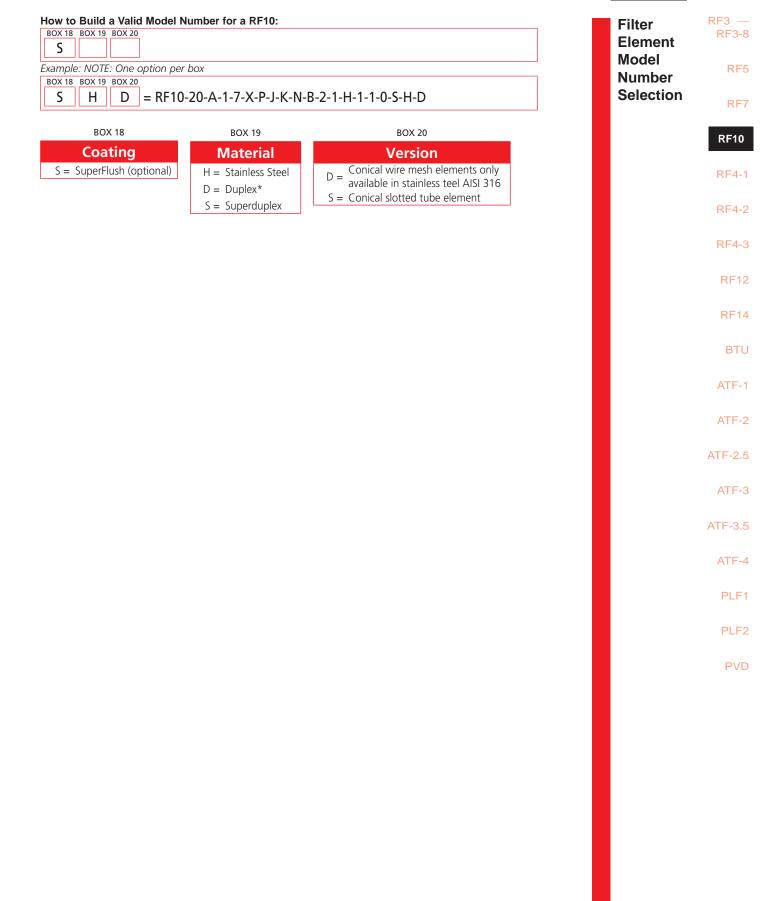
Backflushing Filter AutoFilt® RF10 RF10

																Dimensions RF3 — RF3-8
Size	DN1 in (mm)	DN2 in (mm)	DN3 in (mm)	DN4 in (mm)	b1 in (mm)	b2 in (mm)	b3 in (mm)	b4 in (mm)	b5 in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	h4 in (mm)	h5 in (mm)	H1 in (mm)	RF5
RF10-10	10 (100)	10 (100)	4 (40)	G3/4	25 (250)	25 (250)	29.8 (298)	-	-	36 (360)	68.7 (687)	16 (160)	71.7 (717)	-	127.4 (1274)	
RF10-20	20 (200)	20 (200)	6.5 (65)	2.5 (25)	32 (320)	32 (320)	30.5 (305)	28 (280)	29.5 (295)	42.5 (425)	88.5 (885)	16.1 (161)	100.5 (1005)	7.9 (79)	155.9 (1559)	RF7
RF10-23	20 (200)	20 (200)	6.5 (65)	2.5 (25)	32 (320)	32 (320)	30.5 (305)	28 (280)	29.5 (295)	42.5 (425)	110 (1100)	16.1 (161)	134.1 (1341)	7.9 (79)	189.5 (1895)	RF10
RF10-25	25 (250)	25 (250)	6.5 (65)	2.5 (25)	35 (350)	35 (350)	30.5 (305)	30 (300)	29.5 (295)	46.2 (462)	111.7 (1117)	13.1 (131)	141.4 (1414)	8.3 (83)	129.7 (1297)	
RF10-30	30 (300)	30 (300)	6.5 (65)	2.5 (25)	40 (400)	40 (400)	62.1 (621)	35 (350)	33 (330)	42 (420)	112.6 (1126)	26.6 (266)	8.2 (82)	140.9 (1409)	197.8 (1978)	RF4-1
RF10-35	35 (350)	35 (350)	6.5 (65)	2.5 (25)	45 (450)	45 (450)	63.7 (637)	41 (410)	42 (420)	42 (420)	113.6 (1136)	26.6 (266)	8.2 (82)	XX (1424)	199.2 (1992)	RF4-2
RF10-40	40 (400)	40 (400)	8 (80)	2.5 (25)	52 (520)	52 (520)	73.5 (735)	46 (460)	47 (470)	47 (470)	122.5 (1225)	30 (300)	8.2 (82)	142.4 (1492)	212.5 (2125)	
RF10-50	50 (500)	50 (500)	8 (80)	4 (40)	60 (600)	60 (600)	77 (770)	56 (560)	49 (490)	49 (490)	130 (1300)	35 (350)	10.5 (105)	157.6 (1576)	221 (2210)	RF4-3
RF10-60	60 (600)	60 (600)	10 (100)	4 (40)	70 (700)	70 (700)	90 (900)	65 (650)	61 (610)	61 (610)	136 (1360)	33 (330)	19.5 (195)	159 (1590)	227 (2270)	RF12
Size	H2 in (mm)	H3 in (mm)	L1 in (mm)	L2 in (mm)	L3 in (mm)	L4 in (mm)	L5 in (mm)	D1 in (mm)	D2 in (mm)	D3 in (mm)	D4 in (mm)	E1 in (mm)	E2 in (mm)	F1 in (mm)	F2 in (mm)	RF14
RF10-10	83.7 (837)	35 (350)	1 (10)	18.8 (188)	46 (460)	64.8 (648)	50 (500)	37.5 (375)	27.3 (273)	34 (340)	1.8 (18)	G1/2	G1/2	24 (240)	9 (90)	BTU
RF10-20	112.2 (1122)	55 (550)	1.5 (15)	24.5 (245)	51.7 (517)	76.2 (762)	50 (500)	49 (490)	35.56 (355.6)	37 (370)	1.8 (18)	DN25	G1/2	26.9 (269)	12 (120)	ATF-1
RF10-23	145.8 (1458)	70 (700)	1.5 (15)	24.5 (245)	46 (460)	70.5 (705)	50 (500)	49 (490)	35.56 (355.6)	49.6 (496)	1.8 (18)	DN25	G1/2	35.1 (351)	12 (120)	
RF10-25	152.3 (1523)	55 (550)	1.5 (15)	27 (270)	47.7 (477)	74.7 (747)	50 (500)	54 (540)	40.64 (406.4)	43 (430)	1.8 (18)	DN25	G1/2	30.4 (304)	12 (120)	ATF-2
RF10-30	153.1 (1531)	70 (700)	1.5 (15)	32.3 (323)	49.7 (497)	82 (820)	50 (500)	64.5 (645)	50.8 (508)	54 (540)	1.8 (18)	G1/2	G1/2	38.2 (382)	15 (150)	ATF-2.5
RF10-35	154.8 (1548)	70 (700)	1.5 (15)	37.8 (378)	57.6 (576)	95.4 (954)	50 (500)	75.5 (755)	61 (610)	64 (640)	1.8 (18)	G1/2	G1/2	45.3 (453)	15 (150)	
RF10-40	161.7 (1617)	70 (700)	1.5 (15)	48.5 (485)	63.2 (632)	111.7 (1117)	50 (500)	86 (860)	71.1 (711)	72.7 (727)	2.7 (27)	G1/2	G1/2	51.4 (514)	15 (150)	ATF-3
RF10-50	170.1 (1701)	70 (700)	2 (20)	54.3 (543)	69.8 (698)	124 (1240)	50 (500)	97.5 (975)	81.3 (813)	86 (860)	3 (30)	G1/2	G1/2	60.8 (608)	20 (200)	ATF-3.5
RF10-60	175.9 (1759)	70 (700)	2 (20)	64.3 (643)	79.5 (795)	143.8 (1438)	50 (500)	117.5 (1175)	101.6 (1016)	104 (1040)	3.2 (32)	G1/2	G1/2	73.5 (735)	20 (200)	
	. ,	. ,	. ,	. ,	. ,	. ,	. /	. /	. ,	,	. ,			. ,	. /	ATF-4

Size	Pressure Rating psi (bar)	Connection Inlet/Outlet	Connection Backflushing Line	Weight Empty Ibs (kg)	Volume Gallons (liters)	Amount of Filter Elements	Filter Area in ² (cm ²)	Backflushing Amount gal (liters)	
10	87 (6)	DN 100	40	624 (283)	10 (36)	6	558 (3600)	154 (583)	
20	87 (6)	DN 200	65	981 (445)	25 (95)	6	1105 (7128)	330 (1250)	
23	87 (6)	DN 200	65	1025 (465)	35 (131)	5	1868 (12050)	374 (1417)	
25	87 (6)	DN 250	65	1213 (550)	42 (160)	6	2241 (14460)	374 (1417)	
30	87 (6)	DN 300	65	1598 (725)	80 (304)	9	3362 (21690)	374 (1417)	
35	87 (6)	DN 350	65	1934 (877)	119 (452)	11	4109 (26510)	374 (1417)	
40	87 (6)	DN 400	80	2619 (1188)	163 (616)	18	6724 (43380)	639 (2417)	
50	87 (6)	DN 500	80	2985 (1354)	235 (891)	24	8965 (57840)	639 (2417)	
60	87 (6)	DN 600	100	5644 (2560)	393 (1489)	40	14942 (96400)	903 (3417)	


PLF1

PLF2


PVD

Technical Data

RF10 Backflushing Filter AutoFilt[®] RF10₇

Backflushing Filter AutoFilt® RF10 RF10

Backflushing Filter AutoFilt[®] RF4

The automatic backflushing RF4 filter is a self-cleaning system for removing particles from low viscosity fluids. Its robust construction and automatic backflushing capability make a major contribution to operational reliability and reduce operating and maintenance costs. The slotted tube or SuperMesh[™] filter elements with filtration rates from 25 to 1000 µm ensure highly effective separation of contaminating particles from the process medium.

Automatic cleaning starts as soon as the elements become contaminated. The flow of filtrate is not interrupted during the backflushing procedure. Two sizes allow flow rates from 10-60 gpm. The RF4 is available as a fully automatic or purely manual version. Numerous combinations of materials and equipment as well as individually adjustable control parameters

Numerous combinations of materials and equipment as well as individually adjustable control parameters allow optimum adaptation of the filter to any application.

OPERATION OF THE RF4

Filtration

The fluid to be filtered flows through the slotted tube filter elements of the backflushing filter passing from the inside to the outside. Contamination particles collect on the smooth inside of the filter elements. As the level of the collected contamination increases, the differential pressure between the contaminated and clean sides of the filter increases. When the differential pressure reaches its pre-set value, the backflushing cycle begins.

Triggering Automatic Backflushing

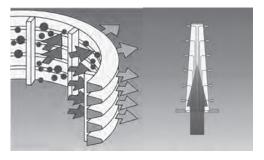
Backflushing is triggered automatically when the differential pressure set point is exceeded. As soon as backflushing has been triggered, the filter starts to clean the filter elements.

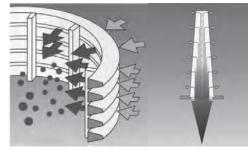
Triggering Backflushing on Manual Version

When the differential pressure set point is reached, the visual clogging alarm indicates to an operator or maintenance personnel that a backflush cycle is needed.

Backflushing of the Filter Elements - Backflushing Cycle

The cycle begins with the element plate turning 90°. This brings a clean filter element into filtration, and a contaminated filter element is positioned over the fixed flushing connection.


The backflush valve is opened.


The differential pressure between filtrate side and backflush line causes a small amount of the filtrate to reverse flow through the element to be cleaned. The contamination particles collected on the inside of the filter element are loosened and flushed into the backflush line via the flushing arm. As soon as the "backflushing time per element" has elapsed, the backflushing valve is closed. The backflushing cycle is terminated when all the filter elements have been cleaned. On the RF4 with manual backflushing, the element plate including filter elements, is turned and the backflushing valve is opened by hand. Each filter element is cleaned successively in this manner.

SPECIAL FEATURES OF THE RF4

Isokinetic Filtering and Backflushing

The special conical shape and configuration of the filter elements allows for even flow, resulting in low pressure

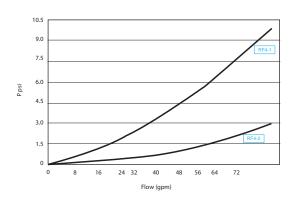
drop and complete cleaning of the elements. The advantage: fewer backflushing cycles and lower loss of backflushing fluid.

Pulse-aided Backflushing

The filter element to be backflushed remains in the flushing position for only a few seconds. Rapid opening of the pneumatic backflushing valve generates a pressure surge in the openings of the filter elements that provides a pulse-aided cleaning effect to the backflushing process.

Low Backflushing Quantities Due to Cyclic Control

The backflush valve opens and closes during backflushing of each filter element, further minimizing the amount of filtrate needed to effectively clean the element.


Backflushing Filter AutoFilt[®] RF4 RF4

Water Applications

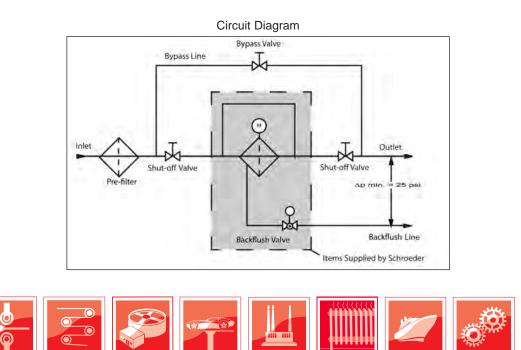
	Max. Flow Rate	gpm (L/min)
Fluid	RF4-1	RF4-2
Water	32(120)	60(220)

The flow rate ranges indicated apply to filtration ratings \geq 100 μm

Important The pressure drop curves apply to water and other fluids up to a viscosity of 11 mm²/s.

Cooling Lubricant Applications

STEEL


MAKING

PULP & PAPER

WASTE WATER AUTOMOTIVE

TREATMENT MANUFACTURING

		Max. Flow Rate gpm (L/min)					
Material Handling	Type of Machining	RF4-1	RF4-2				
Aluminum	Cutting	26 (100)	53 (200)				
Cast Iron	Cutting	18 (70)	42 (160)				
Carbon Steel	Cutting	21 (80)	48 (180)				
Stainless Steel	Cutting	21 (80)	48 (180)				
Aluminum	Grinding	24 (90)	53 (200)				
Cast Iron	Grinding	13 (50)	37 (140)				
Carbon Steel	Grinding	16 (60)	40 (150)				
Stainless Steel	Grinding	16 (60)	40 (150)				

INDUSTRIAL

THERMAL

TRANSFER

Industries Served

RF3 —

RF3-8

RF5

RF7

RF10

RF4-1

RF4-2

RF4-3

RF12

RF14

BTU

ATF-1

ATF-2

ATF-2.5

ATF-3

ATF-3.5

ATF-4

PLF1

PLF2

PVD

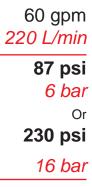
MARINE

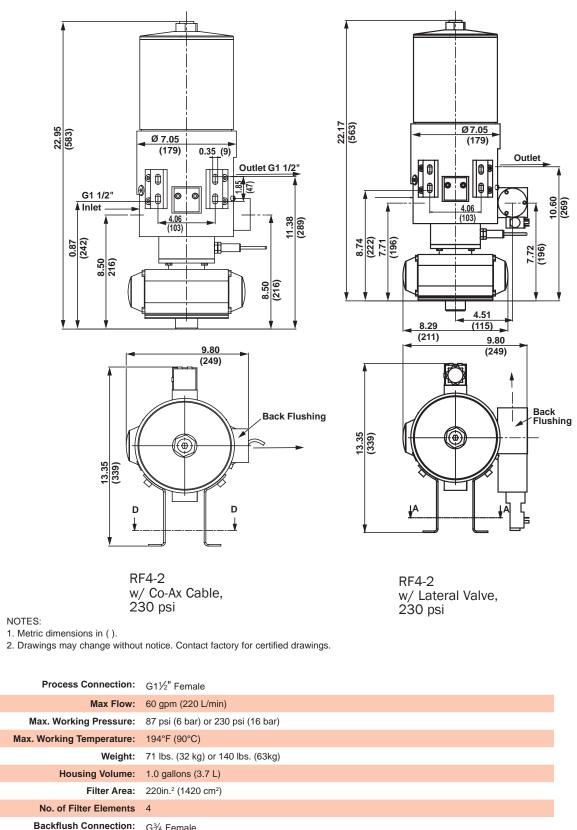
MACHINE

TOOL

RF4-1 Backflushing Filter AutoFilt[®] RF4

32 gpm ши 120 L/min Outlet G1" 87 psi 16.89 (429) Ø 5.51 (140) 3.62 3.62 18.78 (477) 6 bar (92) (92) or 5.83 (148) 0.<u>35</u> (9) Control Hole 230 psi 0 Outlet G1" Inlet G1" 16 bar € Inlet G1 0 1.30 (33) 6.77 (172) <u>5.55</u> (141) 6.89 (175) Ħ RF4-1 œ€ w/ Manual Controls, 21 87 psi 10.16 (258) Back Flushing G 1/2" H 18.78 (477) RF4-1 Ø (148) Control Hole Outlet G1").35 (9) w/ Co-Ax Cable, ₿ 230 psi Inle G1 9.13 6.89 6.77 172) Back Flushing RF4-1 10.16 w/ Lateral Valve, 230 psi 309) NOTES: 1. Metric dimensions in (). 2. Drawings may change without notice. Contact factory for certified drawings. **Specifications** Process Connection: G 1" Female Max Flow: 32 gpm (120 L/min) Max. Working Pressure: 87 psi (6 bar) or 230 psi (16 bar) Max. Working Temperature: 194°F (90°C) Weight: 29 lbs. (13 kg) or 33 lbs. (15kg) Housing Volume: 0.66 gallons (2.5 L) Filter Area: 85in.2 (548 cm2) No. of Filter Elements 4 Backflush Connection: G¹/₂ Female Backflush Volume: 1.1 gallons (4 L/cycle)


Backflushing Filter AutoFilt® RF4 RF4-1


How to	Build a	Valid N	lodel Nu	mber fo	or a RF4	4:							RF3 —
BOX 1 RF4	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	BOX 11			RF3-8
Example	: NOTE:		ion per b	OX						L			RF5
BOX 1	BOX 2	BOX 3 ET	вох 4 1	BOX 5	BOX 6 E	BOX 7	вох 8 2	вох 9 16	BOX 10	вох 11 КМS50) = RF41E1	TAAECO216XKMS50	RF7
BOX 1			BOX 2			BOX 3				BOX 4		BOX 5	RF10
Filte Serie			Size 1 = G1"			ntrol [·] ctro-pne		cyclic	W	Itage T	rol,	Materials	RF4-1
RF4			1 = 01		pne	ntrol, (ind eumatic ctric Cor	drive)		W	thout soler ith control* lenoid valve	* and	AA = (only RF\$-1, 230 psi) Stainless Steel head	RF4-2
					M = Ma		ILIOI		AC 2 - W	th control	* and	EE = and bowl (only RF4-1, 87 psi)	RF4-3
	BOX 6					BOX 7			$3 = \frac{W}{so}$	lenoid valve ithout cont lenoid valve	rol, with e 24 V AC	BOX 8	RF12
	iterial rnal P					shing t backflu			4 = so	ithout cont lenoid valve	e 24 V AC	Differential Pressure Control	RF14
E = S	tainless	Steel			Coaxial	valve, b	rass		W	y for ET con ithout cont < 400 V/N/F	rol*, drive	0 = Without differential pressure monitoring Fixed value: 7.3 psi (0.5	BTU
					brass (c control	ve, nicke only on N I models	л ['] or ЕР')	Т	W		*, drive 3 x	1 = bar), Type DS 32 N/O contact	ATF-1
				KE =	brass (c	ve, nicke only on N models)	л or EP			voltage of 120 V AC,		Adjustable: 1.5 psi (0.1 2 = bar) - 14.5 psi (1 bar), Type DS 31, N/O contact	ATF-2
		BOX 9					В	OX 10				BOX 11	ATF-2.5
	Pres	sure l	Range			M	odifi	catio	n No.		Eleme	nt Type & Size	ATF-3
06 = v		np), only	ousing fas / for hous			X =		t versio ys suppl				bes, 30 to 1000µm h™ 25µm, 40µm, 60µm	ATF-3.5
16 - 2		16 bar)	(filter upp	er						SKMS =	Slotted Tu	be Superflush 30 µm to 1000	ATF-4
										SKMD =	SuperMes 60µm	h™ Superflush 25µm, 40 µm,	PLF1
													PLF2

PVD

NOTES: Box 5. AA only available for 16 bar. AP only available for 6 bar.

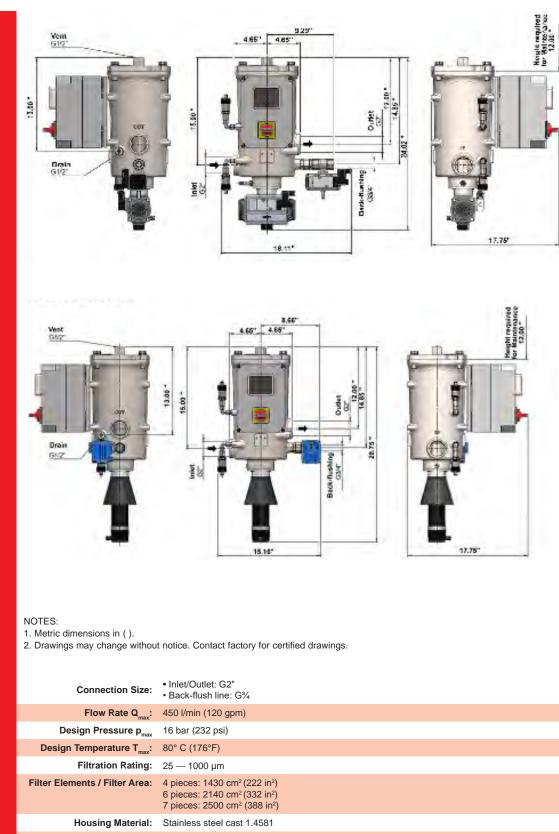
RF4-2 **Backflushing Filter AutoFilt® RF4**

Specifications

Max Flow:	60 gpm (220 L/min)
Max. Working Pressure:	87 psi (6 bar) or 230 psi (16 bar)
Max. Working Temperature:	194°F (90°C)
Weight:	71 lbs. (32 kg) or 140 lbs. (63kg)
Housing Volume:	1.0 gallons (3.7 L)
Filter Area:	220in. ² (1420 cm ²)
No. of Filter Elements	4
Backflush Connection:	G¾ Female
Backflush Volume:	3.4 gallons (13 L/cycle)

Backflushing Filter AutoFilt® RF4 RF4-2

OX 1 BOX 2 BOX 3 BC RF4	el Number for a RF4: DX 4 BOX 5 BOX 6 BOX 7 BOX 8	BOX 9 BOX 10 BOX 11		RF3 RF3
ample: NOTE: One option				RI
OX 1 BOX 2 BOX 3 BC RF4 2 ET ET	DX 4 BOX 5 BOX 6 BOX 7 BOX 8 1 NN E CO 2	BOX 9 BOX 10 BOX 11 16 X KMS50 = RF4	42ET1NNECO216XKMS50	RI
BOX 1 BOX 2	BOX 3	BOX 4	BOX 5	RF
Filter SeriesSize2 = G1" 1	Control Type Electro-pneumatic cyclic		Materials Carbon Steel,	RF4
RF4	EPT = control, (including pneumatic drive) ET = Electric Control	0 = without solenoid value With control* and 1 = solenoid valve 230 V	NN = nickel plated (only RF4-2 230 psi) Stainless Steel head	RF4
	M = Manual	AC 2 = With control* and solenoid value 24 V AC	EE = and bowl (only RF4-2, 87 psi)	RF4
BOX 6	BOX 7	$3 = \frac{\text{Without control, with}}{\text{solenoid valve 24 V AC}}$	BOX 8	RF
Material of Internal Parts	Backflushing Valve 0 = Without backflushing valve	$4 = \frac{\text{Without control, with}}{\text{solenoid valve 24 V AC}}$	Differential Pressure Control Without differential	RF
E = Stainless Steel	CO = Coaxial valve, brass Ball valve, nickel plated	Only for ET control: $OC = \frac{Without control^*, drive}{3 \times 400 V/N/PE, 60 HZ}$	0 = pressure monitoring Fixed value: 7.3 psi	B
	KN = brass (only on M or EPT controll models) Ball valve, nickel plated	$1C = \frac{\text{With control}^*, \text{ drive 3 x}}{400 \text{ V/N/PE, 60 Hz}}$	1 = (0.5 bar), Type DS 32 N/O contact Adjustable: 1.5 psi	ATF
	KE = brass (only on M or EPT control models)	*Supply voltage of control is 110-120 V AC, 60 Hz	2 = (0.1 bar) - 14.5 psi (1 bar), Type DS 31, N/O contact	ATF
BOX 9	BOX 10	BC	DX 11	ATF-2
Pressure Ran 87 psi (6 bar) (hou		o. Element 1	Гуре & Size	ATF
on _ fastened with clam	np), only $X = \frac{Latest version is}{always supplied}$	KMS = Slotted Tubes, 3	· · · · · · · · · · · · · · · · · · ·	
for housings in sta steel design		KMD = SuperMesh™ 2 SKMS = Slotted Tube Su	25μm, 40μm, 60μm Iperflush 30 μm to 1000	ATF-
16 = 230 psi (16 bar) (fi section threaded)	ter upper	μπ	Guperflush 25μm, 40 μm,	ATF
		·		PL
				PL
				ΡL

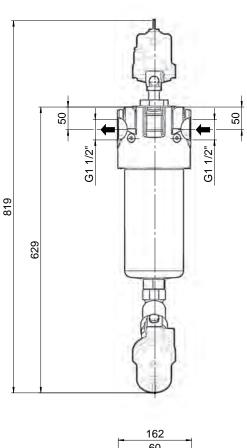

NOTES: Box 5. AA only available for 16 bar. AP only available for 6 bar.

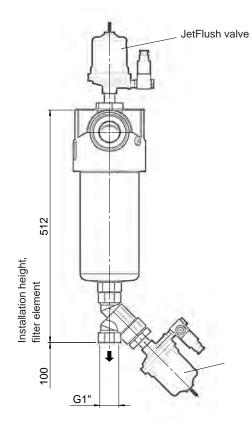
RF4W-3 Backflushing Filter AutoFilt[®] RF4-3

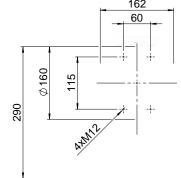
120 gpm 450 L/min

232 psi 16 bar

Specifications


Weight: 45 kg (99.2 lbs)


Backflushing Filter AutoFilt® RF4 RF4W-3


		акг4. BOX 6 ВО	X 7	BOX 8	BOX	9 BOX 1) BOX	11				F3 RF3
RF4												
ample: NOTE: One option 30X 1 BOX 2 BOX 3 BC		BOX 6 BO)X 7	BOX 8	BOX	9 BOX 1) BOX	11				R
	1 NN		0	2	16				= RF42	2ET1NNECO216XKMS50		R
BOX 1	BOX 2		BOX	3			BOX 4			BOX 5		RF
Filter Type Left Filter Inlet -	Size 3 = G2"	Press 2 = 10	bar (o	only for	r EU)	E	ber of lemer		er	Base Frame / Wall Assembly	F	RF4
Standard 3 = 16 bar (EPT & EU) RF4WR = Right Filter Inlet 3 = 16 bar (EPT & EU)			oieces - S		rd	0 = Without - standard 1 = For wall mounting 2 = With base frame	F	RF4				
							bieces - c se of hig		oad	$3 = \frac{\text{Air-bleed valve \&}}{\text{piping}}$	-	RF4
										$4 = \frac{1}{(\text{plastic})}$ and piping		RF
BOX 6		BOX 7							BOX			RF
Control Type EPT: Electro-					е				Vers			D
A = pneumatic cyclic	D 50Hz/6	voltage 23 0Hz (EPT 8	& EU)	- Stand	dard	0 = Wit	hout cor	ntrol, lo	oose c	cable, cable length 5 meters		В
Control EU: Electrical B = circulation control -	 Gear motor, control valve or backflush valve unit 24VDC) 			t 24VDC) $1 = \frac{1}{1}$ the terminal strip					P	ATI		
Standard					2 = ACU Basic on Filter - Standard3 = ACU Basic with 5 meters cable for wall mounting				P	AT		
				$4 = \frac{AC}{Wa}$	U (metal I mounti	contro ng)	ol cabi	inet, with 5 meter cable for	AT	F-		
BOX 9		В	OX 10)					BO	X 11	P	AT
Differential Press Monitoring	ure H		atin	ng		F1 -	Inner Parts Stainless steel 1.4301, 1.4541 or similar			AT	F-	
$5 = \frac{\text{HDA 4700 Stainless s}}{\text{V2A (4-20 mA), 2 pieton)}}$		Stainless = 1.4581(Standare	Group		0	E1 = (Group 304/321) - Standard E2 = Stainless steel 1.4401, 1.4404, 1.4571 or similar (Group 316)					A	AT
	BOX 12								BO	X 13		PL
End I	Document	tation					M	odifi	cati	on Number		PL
) = Standard (Assembly & Incorporation)	Operating mar	nual, E plai	n, De	claratio	on of	The	The latest version is always supplied (currently 2)					P
= Certificate of Conform	ance CoC + st	andard							BO			
B = Acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and function test + standard			Fil				Filtration Rating					
C = Acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and function test			S = "S" additionally prefixed for SuperFlush KNS = Wedge wire 50 μm up to 1000 μm									
D = Material inspection certificates according to EN 10204, 3.1 for pressure-bearing media-contacting housing parts + standard			KND = SuperMesh 25 μm, 40 μm, 60 μm (3-layer) Filtration KNS 50 μm, 100 μm, 150 μm, 200 μm,									
Russian device pass inc = additional Declaration of standard						Ratii Filtra Ratii	tion			m, 500 μm, 1000 μm) μm, 60 μm		
	BOX 15						5	ration	rating	gs available on request		
									,	•		
	ecial Num	ber										

RF12 Backflushing Filter AutoFilt[®] RF12

NOTES:

1. Metric dimensions in ().

2. Drawings may change without notice. Contact factory for certified drawings.

Specifications

Process Connection:	G 1 _{1/2} " Female
Max Flow:	21 gpm (80 L/min)
Max. Working Pressure:	145 psi (10 bar)
Weight:	33 lbs. (15 kg)
Housing Volume:	0.48 gallons (1.8 L)
Filter Area:	55 in. ² (356 cm ²)
No. of Filter Elements	1
Backflush Connection:	G1" Female
Backflush Volume:	0.79 gallons (3 L/cycle)

Backflushing Filter AutoFilt® RF12 RF12

BOX 1 BO		х 7 вох 8 К КSD25 = RF12-1-ЕРО	-1-S-0-10-X / KSD25	Number Selection	RF
					RF
BOX 1	BOX 2	BOX 3	BOX 4		RF
Filter Series	Protective Filter EPO = Electropneumatic control	Material Filter housing:	Back-Flushing Valve		RF4
RF12	$EP1 = \frac{EP1}{Pilot} = \frac{EP1}{Pilot}$	1 = aluminum, internal parts: stainless steel	CO = connection CO = Coaxial valve, brass Ball valve, brass		RF4
	$EP2 = \frac{pilot valve 24 VDC Device}{connector M12x1 (w/o mating)}$		$KN = \frac{Ball Valve, brass}{nickel-plated}$ $S = \frac{Piston control valve,}{brass}$		RF1
	connector) Electropneumatic control incl.	BOX 5	BOX 6		RF
	pilot valve 230 VAC Device EP3 = connector DIN En 175301- 803 / form A (w/o mating	Differential Press Monitoring	Pressure Range 10 = 145 psi (10 bar)		RF
	connector) Electropneumatic control incl. EPZ3 = pilot valve 230 VAC, with time	$0 = \frac{\text{Without differential}}{\text{pressure monitoring}}$			B
	control (1 x 230V/N/PE 50 Hz) Electropneumatic control incl.	$5 = \frac{2 \times \text{HDA} 4700 \text{ stainley}}{\text{steel} (4-20 \text{ mA})}$			ATF
	$EPD3 = \frac{\text{pilot valve 250 VAC, with}}{\text{differential pressure control (1}} \times 230 \text{V/N/PE 50 Hz}$	$7 = \frac{\text{Fixed value 0.5 bar. I}}{\text{GW, n.c. contact}}$			ATF
	BOX 7	BOX 8			ATF-2
Mod	ification Code Filte	er Elements / Filtratio			ATF
X = Latest	S = no	eceded with an additional "S" f n-sticking coating edge wire 30µm	or superflush		ATF-3
	Lee Su	perMesh wire mesh, sintered, 2 µm; others on request	5 μm / 40 μm /		ATF
					PL

PLF2

PVD

Backflushing Filter AutoFilt[®] RF14

15,400 gpm 58,295 L/min

88 psi 6 bar The AutoFilt® RF14 is a self-cleaning system for extracting particles from low viscosity fluids. Its robust construction and automatic back-flushing capability make a major contribution to operational reliability and reduce operating and maintenance costs. The slotted or SuperMesh baskets in the filter with filtration rates from 10 to 100µm ensure highly effective filtration of contaminating particles from the process medium.

Automatic cleaning starts as soon as the elements become contaminated. The flow of filtrate is not interrupted during the back-flushing procedure. A range of filters of different sizes allow flow rates of up to 15,400 gpm. Numerous combinations of materials and equipment as well as individually adjustable control parameters allow optimum adaptation of the filter to any application.

This type of fully automatic self-cleaning screen filter has been used for decades in applications wherever suspended solids need to be removed from a pressurized water stream. They are used to remove sand, silt and algae from raw water taken from lakes, ponds, rivers and canals. Such filters provide pretreatment before membrane filtration systems for potable water supply. Other installations include pretreatment for reverse osmosis and other desalination systems. Many municipal and industrial wastewater treatment plants use these filters to prepare secondary effluent for reuse in cooling, irrigation and aquifer recharge systems. Applications in steel mills filtering grimy, oily cooling water are common as are those in the automotive and plastics industries. Cement plants and mining operations use this type of filter for removing solids from tailings. They are found on deep-sea oil platforms for filtering flood water and on ships before portable desalination systems and ballast systems.

Filtration

A back-flushing cycle is complete once the basket element has been cleaned. Filter continues to filter and forward flow is not impeded by backwash cycle.

Special Features of the AutoFilt® Isokinetic Filtering and Back-Flushing

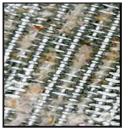
The special configuration of the filter basket elements allows even flow, resulting in low pressure drops and complete cleaning of the elements. The advantage: fewer back-flushing cycles and reduced loss of back-flushing fluid.

Pulse-aided Back-Flushing on the control types EPT and PT; the filter basket to be backflushed remains in the flushing position for only a few seconds. Rapid opening of the pneumatic backflushing valve generates a pressure surge in the filter nozzle openings, providing an additional cleaning effect to the back-flushing process as it cleans the basket as it rotates around the basket area.

Low Back-Flushing Quantities due to cyclic control the back-flushing valve opens and closes during back-flushing. The filter, which produces particularly good flow rates, is of a compact construction with high filtration performance and low pressure drops. The RF14 will use less than 0.5% of the forward flow for backwash.

The fluid to be filtered flows through the slotted filter basket element of the back-flushing filter, passing from the inside to the outside.

Contamination particles then collect on the smooth inside of the filter basket elements. As the level of contamination increases, the differential pressure between the contaminated and clean sides of the filter increases. When the differential pressure reaches its preset value, back-flushing starts automatically.


Triggering Automatic Back-Flushing

Back-flushing is triggered automatically: when the triggering differential pressure is exceeded. **Back-flushing can also be started:**

- By means of an adjustable timer (optional)
- By pressing the TEST key
- As soon as back-flushing has been triggered, the filter starts to clean the filter basket

Back-Flushing of the Filter Basket Elements - Back-Flushing Cycle

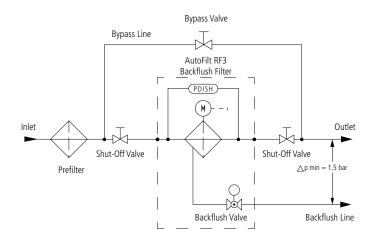
- The gear motor rotates the nozzles around the interior of the basket
- The back-flushing valve is opened
- The pressure drop between the filtrate side and the back-flushing line rinses a small partial flow of the filtrate in the opposite direction into the filter elements to be cleaned. The contamination particles deposited on the inside of the filter basket element are detached and carried out via the nozzles into the back-flushing line.

Back-flushing

Before Cleaning

Backflushing Filter AutoFilt® RF14 RF14

After Cleaning


- After the back-flushing time is complete, the back-flushing valve is closed. In this way, the nozzles have cleaned all areas of the filter basket.
- Initiating the most effective and instantaneous back-flush differential at all areas of the basket filter.

Variable Filter Isometry

The inlet and outlet flanges as well as the back-flushing line can be configured in different positions. This means that the filter can be easily integrated into any plant lay-out.

Ready-to-Operate Unit

The filter control unit and differential pressure measuring line are already connected. Once the filter has been fitted to the pipework, only the auxiliary power supply needs to be connected.

Filter Size	Operating Pressure min-max psi	Inlet/ Outlet (in) Plain Weave	Inlet/ Outlet (in) Delta Mesh	Backflush Line <i>(in)</i>	Weight (lbs) Operating	Volume (gal.)	Length (in)	Width (in)	Foot- print (in²)	Clean Pressure Differential <i>(psi)</i>
10	29-97	4"	5 "	2 "	584.22	8.98	19.685	19.685	11.811	1.45
15	29-97	6"	8"	2.5"	742.96	17.17	23.622	19.685	11.811	1.45
20	29-97	8"	10"	3"	930.35	38.04	27.559	23.622	15.748	1.45
25	29-97	10"	12"	3"	1,219.15	73.18	27.559	27.559	19.685	1.45
30	29-97	12"	14"	4"	1,924.63	105.67	39.37	27.559	27.559	1.45
35	29-97	14"	16"	4"	2,612.47	108.31	43.307	27.559	31.496	1.45
40	29-97	16"	18"	4"	3,714.78	234.32	47.244	35.433	43.307	1.45
45	29-97	18"	20"	4 "	4,166.763	369.05	51.181	43.307	55.118	1.45
50	29-97	20"	24"	5"	5,103.70	446.98	55.118	43.307	59.055	1.45
60	29-97	24"	28"	5"	7,605.94	747.61	62.992	51.181	82.677	1.45

Filter Size	Min. Backwash Volume (gal.)	Min. Flow (gpm)	Max Flow (gpm) w/ Delta Mesh 40 micron
10	10.70	229	616
15	13.91	387	1,166
20	16.91	572	2,288
25	16.91	572	3,036
30	22.20	986	4,400
35	22.20	986	5,000
40	22.20	986	5,280
45	22.20	986	8,800
50	27.75	1,540	11,440
60	27.75	1,540	15,400

КГЭ-О
RF5
RF7
RF10
RF4-1
RF4-2
RF4-3
RF14
RF14
BTU
ATF-1
ATF-2
ATF-2.5
Specifications ATF-3
ATF-3.5
ATF-4
PLF1
PLF2
PVD

RF3 —

RF3-8

RF14 Backflushing Filter AutoFilt[®] RF14

Filter	How to Build a Valid Model	Number for	a RF1	4:									
Model Number	RF14M	OX 4 BOX 5	BOX 6	BOX 7	BOX	8 BC)X 9	BOX 10	BOX	(11			
Selection	Example: NOTE: One option pe BOX 1 BOX 2 BOX 3 B RF14M 252 F		BOX 6	вох 7 Р	вох		ох 9 К	вох 10 VN		< 11 5			
	BOX 1					BO	X 2						BOX 3
	Filter Type	Connection	_				RF14	4 Size					Flange
	RF14M = Marine Model	Flange	10	15	20	25	30	35	40	45	50	60	Standard
	RF14J = Industry model*	1	5"	8"	10"	12"	14"	16"	18"	20"	24"	28"	Connection
	BOX 4	2	4" 3"	6" 5"	8" 6"	10" 8"	12" 10"	14" 12"	16" 14"	18" 16"	20" 16"	24" 20"	Point A = ANSI
	Design Code	4	2.5"	4"	5"	6"	8"	10"	12	12"	14"	16"	F = DIN / EN
	S = HYDAC Standard	5	2"	3"	4"	5"	6"	8"	10"	10"	12"	14"	J = JIS
	A = ASME VIII Div. 1	Y	Custo	mer Spe	ecific N	odel							
	U = ASME VIII Div. 1		BO	X 6							I	BOX 7	
	E = EN 13445	Conne	ectio	n Vo	oltad	ae			E	xpla	osio	n-Pro	tection
		1 = 3 x 4				_		X – F					to ATEX
	BOX 5	2 = 3 x 4	100V /	X / PE	50 H	Z							to IECEX
	Control Type	3 = 3 x 5	500V /	X / PE	50 H	2						-	
	$0 = \frac{\text{Without control, with}}{\text{terminal box}}$	$4 = 3 \times 2$				-	Specification omitted, if not applicable BOX 8						2
	Without control,	5 = 3 x 2					Housing / Corrosion Protection						
	1 = without terminal box, cable loose	Y = Cust		'					/usii	'y '		ateria	
	EPS Electro-pneumatic 2 = control with AutoFilt®	$6 = 3 \times 4$ $7 = 3 \times 4$											7040), inside without
	ACU	$7 = 3 \times 4$ 8 = 3 × 4						C			tectioi prime		7040), inside 2-comp.
	$Y = \frac{Customer-specific}{model}$	$9 = 3 \times 4$					epoxy coating						•
	BOX 9	A = 3 x 5	525V /	X / PE	50 H	2						er (RAL PU-linir	7040), inside 2-comp.
	Pressure Range	B = 3 x 5	575V /	X / PE	60 Hz			E_ St	ainles	s stee			541 or similar (Group
	A = PN 6	C = 3 x 6	590V /	X / PE	50 H	<u>Z</u>		30)4/32 <i>°</i>	,			
	B = PN 10	G = 3 x 4						H = St	ainles	s steel	1.457	71 or sir	milar (group 316)
		$H = 3 \times 2$											
		$I = 3 \times 3$											
		K = 3 x 4	fona /	X / PE	ου Η:	<u> </u>	J						
					В	OX 10							

BOX 10

Material Back-Flush Valve Unit

- N = Butterfly valve: spheroidal graphite cast iron-coated housing, stainless steel disc and shaft, NBR seal
- B = Butterfly valve: spheroidal graphite cast iron-coated housing, bronze disc and shaft, NBR seal
- M = Butterfly valve: spheroidal graphite cast iron-coated housing, Super-Duplex disc and shaft, NBR seal
- V = Butterfly valve: spheroidal graphite cast iron-coated housing, stainless steel disc and shaft, FKM/FPM seal

BOX 11

Pressure Transmitter

- 0 = Without pressure transmitter (Pressure measurement connection to the filter is retained)
- 5 = HDA 4700 stainless steel V2A group (not for filter model M marine)
- 6 = HDA 4300 Duplex

cont. on next page

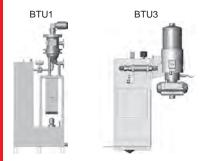
Backflushing Filter AutoFilt® RF14 RF14

Example: NOTE: One option per box BOX 12 BOX 13 BOX 14 BOX 15 BOX 16 BOX 17 BOX 18 BOX 19 Selection	F5
BOX 12 BOX 13 BOX 14 BOX 15 BOX 16 BOX 17 BOX 18 BOX 19	
1 H 345P 0 M H A 40 = RF14M252FS21XPAN51H345P0MHA40	F7
BOX 12 BOX 13 BOX 14 RF	10
Flange Position Internal Parts Options	
Filter outlet Stainless steel 0 = Without	4-1
1 = opposite filter inlet (Standard)H = 1.4404 or similar (group 316)1 = Without integrated protection basket	4-2
Filter outlet offset Stainless steel 2 = With davit	τ Ζ
default $E = 0$ r similar material $A = Top cost RAU 7040$	4-3
Filter outlet offset (group $304/x321$) 5 = Automatic vent vale (plastic)	
default D= Duplex 6 = Automatic vent valve (stainless steel/SuperDuplex)	14
Filter outlet offset $4 = 270^{\circ}$ clockwise to default $S = SuperDuplex$ $7 = With sacrificial anode (O-ring material made of silicone element, conductive) RF$	14
A = Certificate of Conformance CoC	TU
Modification Number B = Acceptance test certificate 3.1 acc. to DIN EN 10204 for design, pressure and function test	10
0 = The latest number will be supplied Acceptance test certificate 3.1 acc. to DIN EN 10204 ATE	F-1
BOX 16 BOX 17 Cert. acc. to EN 10204, 3.1 for the pressure bearing vessel parts in contact with media	-2-
Filter Element Material Type Material products to EN 10204, 3.1 for pressurized vessel parts that come into contact with media	2.5
M = Marine model H = Stainless steel 1.4404 or similar (group 316) P = With back-flush pump	
	- -3
BOX 18 similar material group	0 F
Material Type D = Duplex ATF-3 S = SuperDuplex S = SuperDuplex	5.5
A = Wire Mesh Plain	4
$B = \frac{\text{Wire Mesh } \Delta}{\text{Mesh}}$	
only for sizes 10 - 35	.F1

	BOX 19													
Nominal Filtration Rating														
AutoFilt [®] RF14	Filter N	· Model → Recommended Flange Sizes*												
Filtration Ratings	Marine (M)	Industry (J)	F	ilter	Elem	ent 1	ype .	A	Fi	lter I	Elem	ent	Туре	В
10µm	-	Х					4	5						
20µm	Х	Х				3	4	5			2	3		
30µm	-	Х				3	4							
40µm	Х	Х			2	3				1	2			
50µm	Х	Х		1	2					1	2			
70µm	-	Х		1	2									
90µm	-	Х		1										

* Model recommendation based on experiences with sea-water and serves only as orientation

Seal material of filter element without anode is identical to seal material of the butterfly valve


Seal material of filter element with anode is always silicone

PLF2

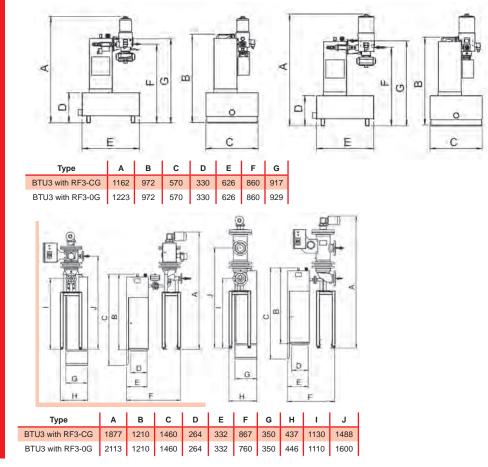
PVD

BTU Backflush Treatment Unit

The BTU unit with integral backflushing filter is a turnkey automatic filtration unit for watermiscible cooling lubricants, oils or washing water which continuously filters solid particles, such as very fine magnetic and non-magnetic metal particles, corundum, sand particles etc. It provides long-term filtration producing reduced-particle filtrate. The quality of the filtrate is dependent on the separation limit of the filter used.

A BTU unit generally consists of:

- Backflushing filter for the main filtration
- Process twist sieve (PTS) to treat the backflushed volume
- Buffer tank with components (only BTU1)
- Control


The process twist sieve (PTS) is a component which is fitted downstream from the backflushing filter to filter the backflushed volume. In this way, with the help of the twist sieve, a further filtration process is carried out via the backflushing line.

The solid particles from the backflushing volume are collected in a bag filter which is suspended under the twist sieve. When this is full, it is easy to dispose of by pulling open the drawer.

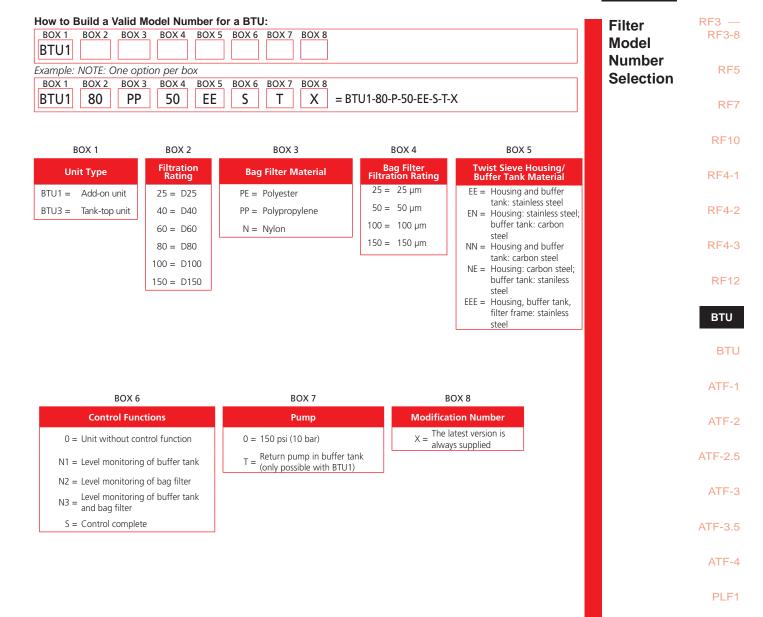
The fluid filtered by the twist sieve or the bag flows back to the buffer tank (BTU1). As soon as the fluid level in the buffer tank reaches the upper switch point of the level gauge (optional), the tank pump (optional) empties the tank.

Due to the short-term pressure shock when backflushing the automatic filter and due to the tangential inlet flow, the fluid is filtered by the wire mesh inside the twist sieve. Approx. 70 % of the backflushing volume passes through the twist sieve and is therefore already filtered when it flows into the buffer tank below the filter via the channel on one side of the twist sieve.

The remaining 30 % of fluid which is heavily contaminated with particles is forced by the centrifugal force and gravity through an opening in the floor of the twist sieve down into a bag filter. The fluid is filtered though the bag from the inside to the outside. Particles are retained and the cleaned emulsion flows into the buffer tank. The pressure shock ensures that the wire mesh (TopMesh) is flushed at every backflushing process, i.e. the twist sieve is self-cleaning and practically maintenance-free.

32-1120

120-4235


150 psi

10 bar

gpm

L/min

BTU Backflush Treatment Unit

PLF2

PVD

BTU Backflush Treatment Unit

A BOX 2 BOX	BOX 4 BOX	5 BOX 6 BOX 7 BOX 8	
Example: NOTE: One o	ption per box		
A BOX 2 BOX A E 1	E E		E-1-E-E-2-L
BOX 1	BOX 2		BOX 3
AutoFilt®	Control		Voltage
A = RF3-C	0 = w/o	RF3	RF4
B = RF3-CG	E = EPT	0 = w/o control	M = with control*; with solenoid valve 230 V AC
D = RF3-0		1 = 3x 400 V/N/PE, 50 Hz	N = with control*; with solenoid valve 24 V DC
E = RF3-0G		2 = 3x 400 V/X/PE, 50 Hz	O = w/o control*; with solenoid valve 230 V AC
F = RF3-1		3 = 3x 500 V/X/PE, 50 Hz	P = w/o control; with solenoid valve 24 V DC
G = RF4-1		4 = 3x 230 V/N/PE, 50 Hz	
		5 = 3x 230 V/X/PE, 50 Hz	
H = RF4-2		5 = 5X 250 V/A/PE, 50 HZ	
H = RF4-2		6 = 3x 415 V/X/PE, 50 Hz	

8 = 3x 460 V/N/PE, 50 Hz

	BOX 4	
Materials Of Housing (RF3 Only)	Materials Of Housing (RF4-1 Only)	Materials Of Housing (RF4-2 Only)
0 = Carbon steel, external primer ("N")	AA = Configuration (AAE): aluminum, aluminum, stainless steel	NN = Configuration (NNE): carbon steel, carbon steel, stainless steel
 1 = Carbon steel, external primer, internal coating ("NM") 3 = Stainless steel ("E") 	EE = Configuration (EEE): stainless steel, stainless steel, stainless steel	EE = Configuration (EEE): stainless steel, stainless steel, stainless steel

BC	X 5		BOX 6					
Materials Of Ba	ckflushing Valve	Differential Pressure Gauge						
RF3	RF4	RF3	RF4					
N = Carbon Steel E = Stainless Steel	1 = Coaxial Valve 2 = Ball Valve	1 = Pressure Chamb Aluminum	per F = Fixed value: 0.5 bar					
		2 = Pressure Chamb Stainless Steel	ber A = Adjustable: 0.1 - 1.0 bar					
		3 = With chemical s Stainless Steel	seal/ G = GW indicator, N/C					

BOX 7	BOX 8						
Flange Options (RF3 only)	Filter Elements (RF3)	(RF4-1)	(RF4-2)				
1 = Filter outlet opposite filter inlet (standard) (not for RF3-C)	B = KD25 C = KD40	B = KMD25 C = KMD40	B = KND25 C = KND40				
2 = Filter outlet offset by 90° clockwise to standard	D = KD60	D = KMD60	D = KND60				
3 = Filter outlet offset by 180° clockwise to standard	E = KD80 L = KS50	E = KMD80 L = KMS50	E = KND80 L = KNS50				
	M = KS100	M = KMS100	M = KNS100				
	N = KS150	N = KMS150	N = KNS150				

Backflush Treatment Unit BTU

PTS	BOX 4 BOX 5 BOX 6 BOX 7	BOX 8 BOX 9		Process Twist	RF
Example: NOTE: One optic				Sieve Model	
BOX 1 BOX 2 BOX 3 PTS 40 250	BOX 4 BOX 5 BOX 6 BOX 7 E L 2	BOX 8 BOX 9 50 = PTS-40-250-E-L-	-2-50	Number Selection	
BOX 1	BOX 2	BOX 3	BOX 4		R
Unit Type	Filtration Rating	Diameter	Housing Material N = Carbon steel,		RI
PTS = Process twist sieve	40 = D40 180/1 = Ø 18	80 mm (only for RF4, without) 80 mm (only for RF4-1, with bracket)	E = Stainless steel		RI
	80 = D80 250 = Ø 2	80 mm (only for RF4-2, with bracket) 50 mm (only for RF3-C and RF3-0)			RI
	100 = D100 150 = D150	50 mm (only for RF3-1)			R
					В
BOX 5 Housing Length	BOX 6 Level Switch	BOX 7 Bag Filter Material B	BOX 8 ag Filtration		1
K = Short (standard for PTS-180) L = Long (standard for	0 = Without 1 = With level switch stainless steel (only for	PE = Polyester PP = Polypropylene	Rating 25 = 25 μm 50 = 50 μm		A
PTS-250/-450)	diameters 250 mm, 450 mm)		00 = 100 μm 50 = 150 μm		A
					ATF
BOX 9					
Modification Number					A
X = The latest version is always supplied					ATF
					A
					P
					F
					I
					I
					F

Automatic Twist Flow Strainer ATF

ATF Perfect pre-filter Great for high contamination levels Low pressure drop Automatic Twist Flow Strainer

The Schroeder Automatic Twist Flow Strainer (ATF) is designed for the filtration of solid particles from water or fluids similar to water. With filtration ratings between 200 μ m and 3,000 μ m, the ATF is particularly well suited for separating suspended solid particles, up to several grams per liter, from low-viscosity fluids. In order to filter higher flow rates, the ATF can be supplied as a skid solution (call factory for details).

Construction and Function

This filter is a hybrid system consisting of a centrifugal separator and an inline filter. The fluid to be cleaned enters the housing tangentially, similar to a centrifugal separator, and accelerates down as a result of the tapered housing. The resulting spiral flow with its centrifugal force carries the coarsest contamination first (its density is obviously higher than that of the fluid) to the inner wall of the housing.

Filtration

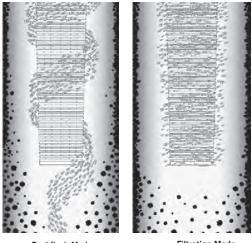
When pressed against the filter wall, the higher density particles settle at a higher rate in the lower part of the filter, where they are finally carried out. The remaining smaller, less dense particles are filtered as the fluid passes through the element and exits the filter.

The conical filter element ensures optimum flow characteristics. On one hand it makes possible continual self-cleaning of the filter during operation. While on the other, it makes the pressure drop of the whole filter much lower than compared with a centrifugal separator of a similar size.

Cleaning Procedure

Both the sediment particles and those separated by the filter element finally collect at the bottom of the housing and are discharged periodically from the system by opening the contamination flap. During this cleaning procedure (depending on the installation of the ATF), part of the untreated fluid flow is used for a few seconds to flush the elements and clean the filter. Because partial flow is used, continuous filtration occurs.

In addition, the ATF is an excellent choice for bypass flow applications which are able to do without a partial flow for short periods of time.


Depending on the application and the amount of solid particles, the cleaning function can be adjusted via a timer function.

Special Features of the ATF

The ATF is well suited to high levels of contamination and large fluctuations in the solid particle content of the untreated water.

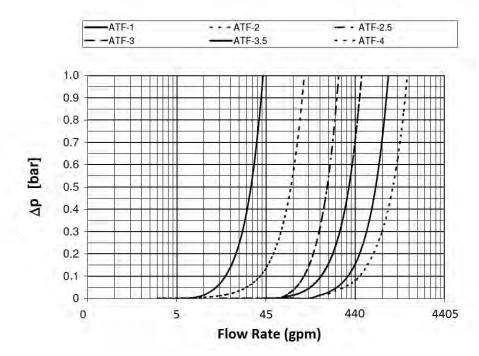
Due to the use of conical slotted tube and sintered wire meshes, a precise selectivity and therefore a constant filtrate quality is ensured – independent of fluctuations in operating pressure or flow rate.

Due to special flow conditions resulting from the element geometry and their arrangement, the pressure drop on the overall unit is relatively low at < 14.5 psi (1.0 bar).

Backflush Mode

Filtration Mode

The pre-filtration of solid particles of a higher density implies that the filter surface area can take a correspondingly higher load and the filter size can therefore be comparatively smaller.


Automatic Twist Flow Strainer ATF

The filter elements are cleaned solely by flushing with untreated fluid.

The ATF saves on space in comparison to conventional separating units, such as lamellar separators or sand filters.

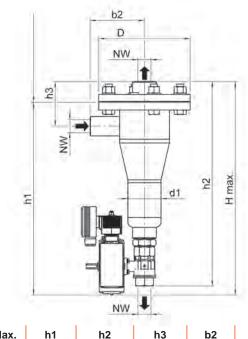
Several ATF's can be integrated into systems, and as a result, can adapt to the required flow rates.

The filter element of the ATF is maintenance-friendly, as it is equipped with a flange cover. On sizes 2 to 4, it is also possible to replace the filter element without needing to open the filter.

The ATF is sized based on the pressure drop curve. A further factor in the calculation is the flow velocity through the inlet flange. It should not exceed 13.12 feet/minute (4 m/s).

In order to be able to size the ATF correctly, the following design data should be available:

- Flow rate
- Type of medium
- Materials / resistance
- Viscosity
- Required filtration rating
- Particulate loading in the fluid
- Solid particle type and density / densities
- Operating pressure
- Operating temperature


Pressure Drop Graph

Filter Calculation and Sizing

Industries Served

ATF Automatic Twist Flow Strainer ATF-1

Filter Size	NW in (mm)	H Max. in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	b2 in (mm)	D in (mm)	d1 in (mm)	Installation Height in (mm)
ATF 1	0.04	19.29	17.52	18.50	4.06	4.92	8.27	3.00	13.78
	(1)	(490)	(445)	(470)	(103)	(125)	(210)	(76.1)	(350)

Filter Housing Specifications

Filtration Rate:	200-3000 μm slotted tube only
Operating Rate:	32°F - 194°F (0°C - 90°C)
Housing Material:	Stainless Steel or Carbon Steel
Size:	1
Flow Rate:	8-35 gpm (30-132 L/m)
Pressure Rating:	230 psi (16 bar)
Connections Inlet/Outlet:	1" NPT (G 1")
Connection Discharge Line:	1" NPT (G 1")
Filter Area:	23 in ² (150 cm ²)
Weight:	33 lbs (15 kg)
Volume:	0.5 gal (1.8 L)

Automatic Twist Flow Strainer ATF-1 ATF

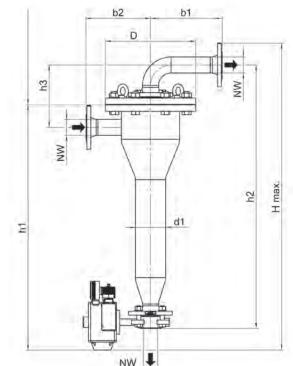
OX 1 BOX 2 BOX 3 BOX 4 B	OX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX	10 BOX 11	RF3 RF
ATF			
mple: NOTE: One option per box			
OX 1 BOX 2 BOX 3 BOX 4 B	OX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX	10 BOX 11	
ATF 1 EPZ 1	E NN 10 0 X UK	52 200 = ATF1EPZ1ENN100X-	
		UKS2200	
			R
BOX 1 BOX 2	BOX 3	BOX 4	
Filter Size	Control Type	Voltage	RF
Sorios		230 VAC 60 Hz	
I = Interoutiet	0 = No controls/No valves	$1 = \frac{250}{\text{Single Phase}}$	RF
ATF	M = Manual valve	$2 = \frac{110VAC}{D}$, 60 Hz, Single	
	FP = Electro-pneumatic disch	arge Phase	RF
	valve, with timer contro	Phase	
	EPZ = Electro-pneumatic disch valve, with timer contro		R
	Electric discharge valve		
	$E = \frac{1}{\text{without timer control}}$		R
	EZ = Electric discharge valve,	with	
	timer control		AT
BOX 5	BOX 6	BOX 7	
Housing Material	Discharge Valve	Pressure Rating	AT
N = Carbon Steel	0 = None	10 = 145 psi (10 bar)	AT
E = Stainless Steel	Butterfly valve, cast housing	16 = 230 psi (16 bar)	
A = for ANSI flanges, also	NN = coated, disc Stainless Steel, cuff BR (not available on size 1)		ATF
add A	Butterfly valve, cast housing		
$J = \frac{\text{for JIS flanges, also}}{\text{add J}}$	NE = coated, disc Stainless Steel,	BOX 8	AT
NPT thread (size 1	CUTT EPDIVI (not available on		
T = only, also add T	size 1) Butterfly valve, cast housing	Accessories	
Internal Coating with	NV = coated disc Stainless Steel, cuff	0 = None	ATF
P = 2-K polyurethane	Viton (not available on size 1)	1 = Base frame (size 2, 2.5 and 3 only)	
paint, also add P	Butterfly valve, cast housing BN = coated, disc Bronze, cuff NBR	Mounting clins (size 2, 2, 5, and 3	AT
	(not available on size 1)	$2 = \frac{1000111119 clips (size 2, 2.5 and 5)}{only}$	
	Butterfly valve, cast housing	Differential pressure gauge in	P
	BE = caoted, disc Bronze, cuff EPDM (not available on size 1)	3 = aluminum (fitted to customer's equipment)	
	Butterfly valve, cast housing	Differential pressure gauge in	P
	BV = coated, disc Bronze, cuff Viton	4 = stainless steel (fitted to customer's	
	(not available on size 1)	equipment)	F
	$E = \frac{\text{Ball valve Stainless Steel (size}}{1 \text{ only}}$	$5 = {Differential pressure gauge in brass} (fitted to customer's equipment)$	
	- ,,		
	M = Ball valve brass (size 1 only)		
BOX 9	BOX 10	BOX 11	
Modification Number	Element Set	Filtration Rating	
X = Latest version supplied by factors	UKS1 = Conical Slotted Tube for size	e 1 $200 = 200 \mu\text{m}$ (not for size 4)	
factory	UKS2 = Conical Slotted Tube for size	e 2 300 = 300 μm (not for size 4)	

UKS3 = Conical Slotted Tube for size 3

UKS3.5 = Conical Slotted Tube for size 3.5

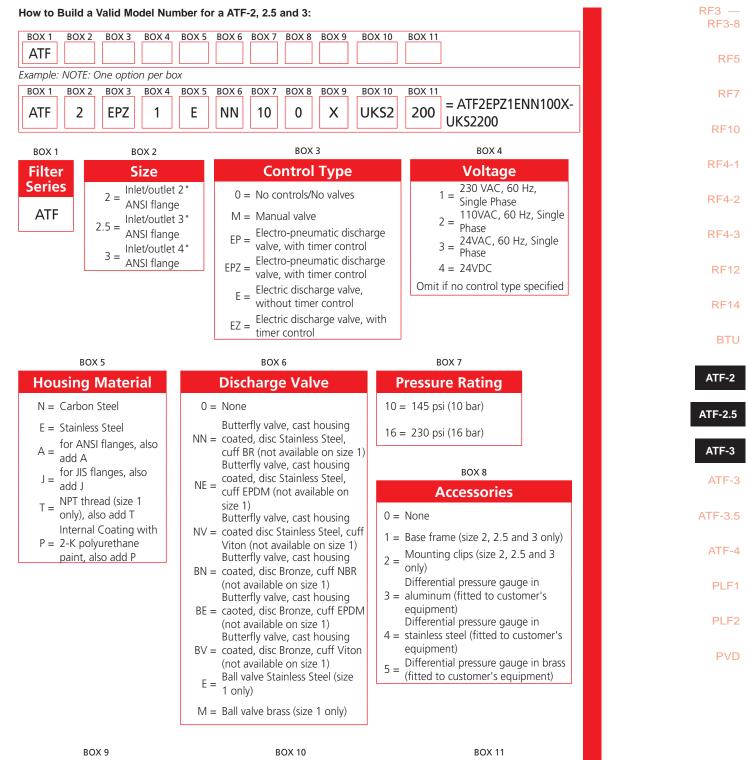
UKS4 = Connical Slotted Tube for size 4

 $1000 = 1000 \,\mu m$


 $2000 = 2000 \ \mu m$

3000 = 3000 µm

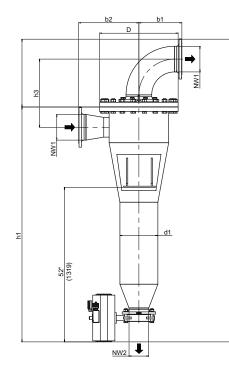
Automatic Twist Flow Strainer ATF-2, ATF-2.5, ATF-3

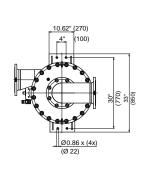

Filter Size	NW in (mm)	H Max. in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	b1 in (mm)	b2 in (mm)	D in (mm)	d1 in (mm)	Installation Height in (mm)				
ATF 2	1.97	45.67	36.42	39.17	9.25	10.63	9.57	13.39	4.50	19.69				
	(50)	(1160)	(925)	(995)	(235)	(270)	(243)	(340)	(114.3)	(500)				
ATF	3.15	56.50	44.88	48.62	12.40	8.66	11.02	15.55	5.50	25.59				
2.5	(80)	(1435)	(1140)	(1235)	(315)	(10.24)	(280)	(395)	(139.7)	(650)				
ATF 3	3.94	68.90	55.12	59.06	13.78	10.24	12.68	17.52	8.63	39.37				
	(100)	(1750)	(1400)	(1500)	(350)	(260)	(322)	(445)	(219.1)	(1000)				

Filter Housing Specifications

Filtration Rate: 200-3000 µm slotted tube only

200-3000 µm slotted tube only		
32°F - 194°F (0°C - 90°C)		
Stainless Steel or Carbon Steel		
2	2.5	3
20-110 gpm	65-260 gpm	85-480 gpm
(75-416 L/m)	(246-984 L/m)	(321-1816 L/m)
145 or 230 psi	145 or 230 psi	145 or 230 psi
(10 or 16 bar)	(10 or 16 bar)	(10 or 16 bar)
2" Flange	3" Flange	4" Flange
(DN 50)	(DN 80)	(DN 100)
2" Flange	3" Flange	4" Flange
(DN 50)	(DN 80)	(DN 100)
55 in²	150 in²	266 in²
(360 cm²)	(966 cm²)	(1720 cm²)
132 lbs	297 lbs	440 lbs
(60 kg)	(135 kg)	(200 kg)
3.5 gal	7.4 gal	14.5 gal
(13.5 L)	(28 L)	(55 L)
	32°F - 194°F (0°C - 90°C) Stainless Steel or Carbon Steel 2 20-110 gpm (75-416 L/m) 145 or 230 psi (10 or 16 bar) 2" Flange (DN 50) 2" Flange (DN 50) 55 in ² (360 cm ²) 132 lbs (60 kg) 3.5 gal	32°F - 194°F (0°C - 90°C) Stainless Steel or Carbon Steel 2 2.5 20-110 gpm (75-416 L/m) 65-260 gpm (246-984 L/m) 145 or 230 psi (10 or 16 bar) 145 or 230 psi (10 or 16 bar) 2" Flange (DN 50) 3" Flange (DN 80) 2" Flange (DN 50) 3" Flange (DN 80) 2" Flange (DN 50) 3" Flange (DN 80) 155 in ² (360 cm ²) 150 in ² (966 cm ²) 132 lbs (60 kg) 297 lbs (135 kg) 3.5 gal 7.4 gal


Automatic Twist Flow Strainer ATF-2, ATF-2.5, ATF-3 ATF



BOX 9	BOX 10	BOX 11
Modification Number	Element Set	Filtration Rating
X = Latest version supplied by	UKS1 = Conical Slotted Tube for size 1	200 = 200 µm (not for size 4)
factory	UKS2 = Conical Slotted Tube for size 2	$300 = 300 \ \mu m \ (not \ for \ size \ 4)$
	UKS2.5 = Conical Slotted Tube for size 2.5	500 = 500 μm
	UKS3 = Conical Slotted Tube for size 3	1000 = 1000 µm
	UKS3.5 = Conical Slotted Tube for size 3.5	2000 = 2000 µm
	UKS4 = Connical Slotted Tube for size 4	3000 = 3000 µm

ATF Automatic Twist Flow Strainer ATF-3.5, ATF-4

Filter Size	NW1 in (mm)	NW2 in (mm)	H Max. in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	b1 in (mm)	b2 in (mm)	D in (mm)	d1 in (mm)	Installation Height in (mm)
ATF 3.5	5.91 (150)	3.94 (100)	88.98 (2260)	70.28 (17.85)	77.95 (1980)	18.82 (478)	11.18 (284)	17.13 (435)	22.24 (565)	10.75 (273)	51.18 (1300)
ATF 4	7.87 (200)	5.91 (150)	101.77 (2585)	78.94 (2005)	88.19 (2240)	22.91 (582)	14.45 (367)	20.24 (514)	26.38 (670)	12.75 (323.9)	40.06 (1170)

Filter Housing Specifications

Filtration Rate:	200-3000 µm slotted tube only	
Operating Rate:	32°F - 194°F (0°C - 90°C)	
Housing Material:	Stainless Steel or Carbon Steel	
Size:	3.5	4
Flow Rate:	350-965 gpm (1324-3652 L/m)	440-1760 gpm (1665-6662 L/m)
Pressure Rating:	145 or 230 psi (10 or 16 bar)	145 or 230 psi (10 or 16 bar)
Connections Inlet/Outlet:	6" Flange (DN 150)	8" Flange (DN 200)
Connection Discharge Line:	4" Flange (DN 100)	6" Flange (DN 150)
Filter Area:	540 in² (3500 cm²)	605 in² (3900 cm²)
Weight:	578 lbs (263 kg)	920 lbs (418 kg)
Volume:	34 gal (130 L)	60 gal (230 L)

Automatic Twist Flow Strainer ATF-3.5, ATF-4 ATF

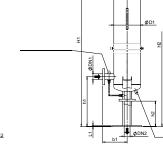
BOX 1 BOX 2			ber fo	BOX 6			8 BOX	9 B	OX 10	BOX 11					Filter Model	RF3 RF3
ATF NOTE: O	ne option p	er box	(Number Selection	n
			BOX 5 E	BOX 6	вох 7 10	вох вох вох в	8 вох		0X 10	вох 11 200	=ATF3.5E		IN100X-			R
AII 5.5			L		10	0				200	UKS2200					RF
BOX 1 Filter	вох 2 Size				C		охз <mark>ol Ty</mark>	pe			во Volt					RF4
	8.5 = ^{Inlet/o} ANSI f		e U = No controls/No valves								1 = ^{230 V/} Single	AC, 60 H Phase				RF4
ATF	utlet 8 lange									2 = Phase		Iz, Single , Single			RF4	
		$EPZ = \begin{cases} Electro-pneumatic dischaves \\ valve, with timer control \end{cases}$						Or	4 = 24VD0	-				RF		
	E = Electric discharge valve, without timer control EZ = Electric discharge valve, timer control							Omit if no control type specified						RF		
				ΕZ	= tim	er cont	rol									BT
BOX				Disc	BO		lvo				вох 7 ure Rating					ATF
	Housing MaterialN = Carbon Steel			Discharge Valve							osi (10 bar)	9				ATF
E = Stainless for ANSI	Steel flanges, also	>	Butterfly valve, cast housing NN = coated, disc Stainless Steel,					16	16 = 230 psi (16 bar)					ATF-2		
A = add A I = for JIS fla	anges, also			cuff BR (not available on size 1) Butterfly valve, cast housing coated, disc Stainless Steel, Steel, cast available on						BOX 8						ATF-3
$T = \frac{1}{0} $	ad (size 1 o add T		INE :	size 1)	not ave	ailable (t housi	on	0 =	Accessories						ATF
	Coating with urethane	ו	NV :	e coate Vitor	ed disc i (not a	Stainle vailable		l, cuff ze 1)	1 = Base frame (size 2, 2.5 and 3 only)						ATF	
paint, as			BN :	coate = coate	ed, diso availab	: Bronzo le on si	e, cuff l ize 1)	NBR		2 = only) Differential pressure gauge in						PL
			BE	= caote (not a	ed, diso availab	: Bronzo le on si	ize 1)	epdM	3 = aluminum (fitted to customer's equipment) Differential pressure gauge in						PL	
			Butterfly valve, cast housing BV = coated, disc Bronze, cuff Viton (not available on size 1) E = Ball valve Stainless Steel (size 1 only)							 4 = stainless steel (fitted to customer's equipment) 5 = Differential pressure gauge in brass (fitted to customer's equipment) 						P١
			M :	= Ball v	alve bi	rass (siz	e 1 onl	ly)								
BOX	(9					BOX 10					BOX	1				
	Iodification Number Latest version supplied by factory			Element Set UKS1 = Conical Slotted Tube for size 1 UKS2 = Conical Slotted Tube for size 2						2	Filtration 00 = 200 μm 00 = 300 μm	(not fo	r size 4)			
				2.5 = C (S3 = C							00 = 500 μm 00 = 1000 μr					
			111/0		a set a set	CI - ++	LT. L. A	· :	2 5	20	00 2000					

UKS3.5 = Conical Slotted Tube for size 3.5

UKS4 = Connical Slotted Tube for size 4

 $2000 = 2000 \ \mu m$

3000 = 3000 µm


Process Inline Filter

145 psi 10 bar Or 230 psi 16 bar

ØDI

Part of the Schroeder Industries 2030 Initiative

E1

NOTES:

1. Top row represents the 10 bar version | In-line (1-stage). Bottom row represents the 10 bar version | In-line (2-stage) 2. Drawings of the 16 bar versions, both 1-stage and 2-stage, are also available upon request.

Filter Size	NW1 in (mm)	NW2 in (mm)	H Max. in (mm)	h1 in (mm)	h2 in (mm)	h3 in (mm)	b1 in (mm)	b2 in (mm)	D in (mm)	d1 in (mm)	Installation Height in (mm)
1-stage	5.91	3.94	88.98	70.28	77.95	18.82	11.18	17.13	22.24	10.75	51.18
	(150)	(100)	(2260)	(17.85)	(1980)	(478)	(284)	(435)	(565)	(273)	(1300)
2-stage	7.87	5.91	101.77	78.94	88.19	22.91	14.45	20.24	26.38	12.75	40.06
	(200)	(150)	(2585)	(2005)	(2240)	(582)	(367)	(514)	(670)	(323.9)	(1170)

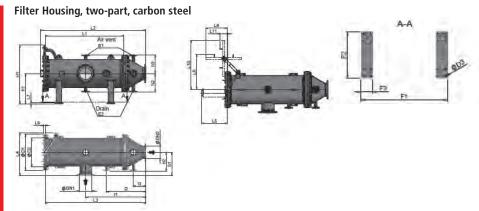
Filter Housing Specifications

Filtration Rate:	1-90 μm	
Operating Rate:	32°F - 194°F (0°C - 90°C)	
Housing Material:	Stainless Steel - E1 and E2	
Flow Rate:	881 gpm (4003 L/min)	
Pressure Rating:	145 or 230 psi (10 or 16 bar)	
Connections Inlet/Outlet:	6" Flange (DN 150)	
Connection Discharge Line:	G1" In-Line Version G1/2" Outlet Version Downward	
Filter Area:	Contact Factory	
Weight:	132 lbs (60 kg)	
Volume:	13 gal (50 L)	

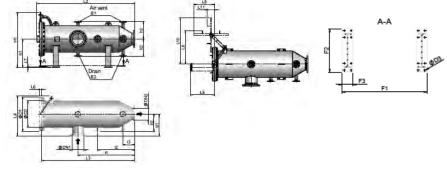
SCHROEDER INDUSTRIES | PROCESS FILTRATION

56

Process Inline Filter



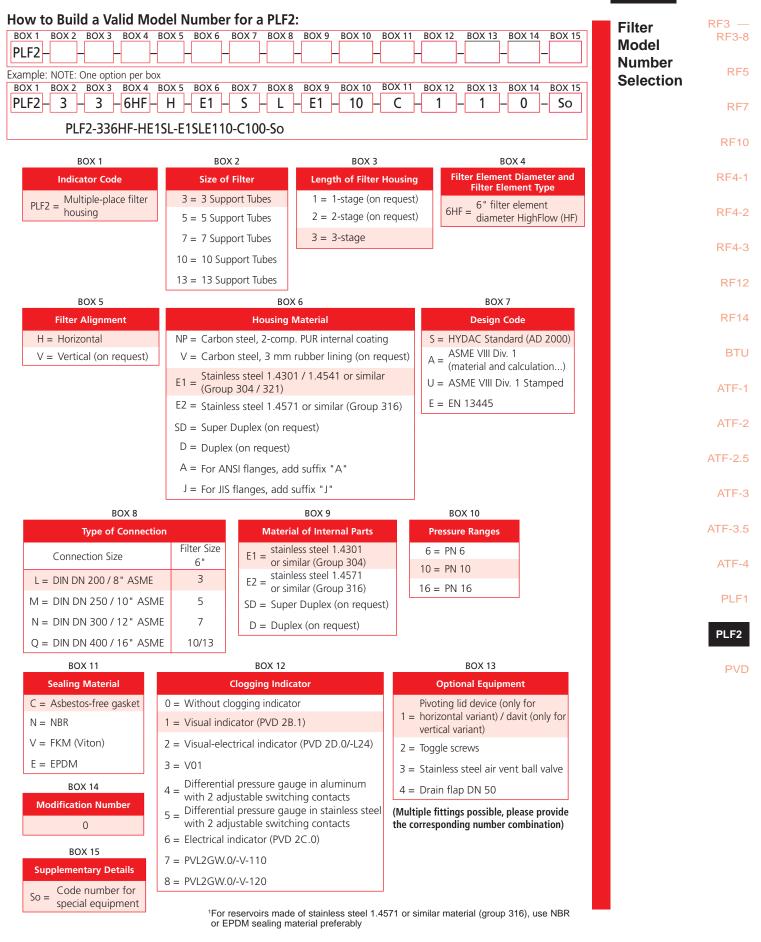
DX 1 BOX 2 BOX	DX 3 BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	BOX 11	BOX 12	BOX 13]		Model		RF3-8
_F1													Numb Select	-	RF
mple: NOTE: One (DX 1 BOX 2 BO)			BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	BOX 11	BOX 12	BOX 13			001001		
	2 9HF		E1	S	С	E1	10	Ν	1	0		-129HF			RF
											<u></u>				RF1(
BOX 1 Filter		вох Filter S			Filt		ousin	9	E	BOI lemer	^{x 4} it Type				RF4-1
Series PLF1	1 = I	or 9" Hi High Loa ilter eler	d Casca		1 =	Len Single	gth e-Stage		6HF =	High Flov	element d v element d				RF4-2
		For High	Flow fil	lter	2 =	= Doub	le-Stage		9HF =	High Flov					RF4-3
BOX	5				BOX 6	6					BOX 7				RF12
Filte Orienta		E1 - 9		lousi s Steel <i>*</i>			rial		ς.		gn Cod der Stand				RF14
V = Vertio		E2 = 5	Stainles	s Steel '					A =	= ASME	VIII Div. 1				ΒΤΙ
H = Horiz	ZONIAI	D = [Superdu Duplex							= ASME = EN 134	VIII Div. 1 I45	stamped			ATF-
		A = v	w/ ANSI	flange	s "A" ·	- readjι	isted add	itionally							
		J = V	w/ JIS fl	anges "	J"- rea	adjuste	d additio	-							ATF-
	BOX 8	J = V	w/ JIS fl	anges "		adjusteo ox 9	d additio	nally	BOX 10		BOX 1	1			
Conn	BOX 8		w/ JIS fl		BO	-		nally	essure		вох 1 eal Ma				ATF-
G2 = Three $C = DIN$ $E = DIN$ (size	read G2 " (si: N DN 50 / 2 N DN 80 / 3 ze 1 only)	Code ze 2 only " ANSI " ANSI		E1 = c $E2 = c$	BO terna stainles or simila group : stainles or simila	ox 9 al Pa as steel ar mate 304) as steel ar mate	rts 1.4301 erial 1.4571	nally Pro Ra 10 =				terial			ATF-2. ATF- ATF-3.
G2 = Three G2 = Three G2 = DIN G2 = DIN G2 = DIN G2 = DIN G2 = C2 =	read G2 "(si. N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 4 re 1 only) N DN 150 / 4	Code ze 2 only " ANSI " ANSI 4" ANSI	/)	E1 = c $E2 = c$ $(y$ $E2 = c$	BO terna itainles or simila group itainles or simila group	ox 9 al Par is steel ar mate 304) is steel ar mate 316) uplex (o	rts 1.4301 erial 1.4571 erial	nally Pro Ra 10 =	essure anges = PN 10		eal Ma N = NBR V = FPN	terial			ATF-2. ATF- ATF-3. PLF1
G2 = Three G2 = Three G2 = DIN G2 = DIN G2 = DIN G2 = DIN G2 = C2 =	read G2 "(si. N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 7 re 1 only)	Code ze 2 only " ANSI " ANSI 4" ANSI	/)	In $E1 = c$ (9) $E2 = c$ (9) $E2 = c$ (9) $E2 = c$ (9) $E2 = c$ (9)	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Par is steel ar mate 304) is steel ar mate 316) uplex (o	rts 1.4301 erial 1.4571 erial	nally Pro Ra 10 =	essure anges = PN 10		eal Ma N = NBR V = FPN	terial			ATF-2. ATF-3. PLF1 PLF
G2 = Three G2 = Three G2 = DIN G2 = DIN G2 = DIN G2 = DIN G2 = C2 =	read G2 "(si. N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 4 re 1 only) N DN 150 / 4	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI	/)	In $E1 = c$ (9) $E2 = c$ (9) $E2 = c$ (9) $E2 = c$ (9) $E2 = c$ (9)	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	nally Pro Ra 10 =	essure anges = PN 10		eal Ma N = NBR V = FPN E = EPD	terial			ATF-2. ATF-3. ATF-3. PLF1
G2 = Three G2 = Three G2 = DIN G2 = DIN G2 = DIN G2 = DIN G2 = C2 =	read G2 "(si. N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 4 re 1 only) N DN 150 / 4	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI	() () () () () () () () () () () () () (Inn $E1 = c$ (i) $E2 = c$ (i) $SD = S$ n $D = C$	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	nally Pro Ra 10 =	essure anges = PN 10 = PN 16	BOX	eal Ma N = NBR V = FPN E = EPD	terial (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF PLF
G2 = Three G2 = Thre	read G2 "(si. N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 4 re 1 only) N DN 150 / 4	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI	() () () () () () () () () () () () () (Inn $E1 = c$ (i) $E2 = c$ (i) $SD = S$ n $D = C$	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	nally Pro R 10 = 16 =	essure anges = PN 10 = PN 16	BOX	eal Ma N = NBR V = FPN E = EPD (13) I Fittin	terial I (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF PLF
G2 = Three G2 = Thre	read G2" (si N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / 3 re 1 only)	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI BC Acces	() () () () () () () () () () () () () (Inn $E1 = c$ (i) $E2 = c$ (i) $SD = S$ n $D = C$	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	10 = 16 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee	BOX D tiona d valve m	eal Ma N = NBR V = FPN E = EPD (13) I Fittin ade of sta	terial (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three G2 = Thre	read G2 "(si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / re 1 only) N DN 150 / re 1 only)	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI BC Acces 2B.1)	/))X 12 550rie	E1 = c $E1 = c$ $E2 = c$ C $E2 = C$ C $D = C$	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	Anally Pro R 10 = 16 = 3 = 4 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv	BOX	eal Ma N = NBR V = FPN E = EPD (13) I Fittin ade of sta	terial I (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three G2 = Thre	read G2 "(si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / re 1 only) N DN 150 / re 1 only)	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI BC Acces 2B.1)	/))X 12 550rie	E1 = c $E1 = c$ $E2 = c$ C $E2 = C$ C $D = C$	BO terna itainles or simila group itainles or simila group iuperdu equest	ox 9 al Pai as steel ar mate 304) as steel ar mate 316) uplex (c	rts 1.4301 erial 1.4571 erial	Anally Pro R 10 = 16 = 3 = 4 = 5 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv Flange	BOX D tiona d valve m e for drai	eal Ma N = NBR V = FPN E = EPD	terial I (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three G2 = Three G2 = Three G2 = Three G2 = DIN G2 = DIN G2 = C = DIN G2 = C = C = C = C = C = C = C = C = C =	vection (read G2 "(si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / 1 re 1 only) UN 150 / 1 re 1 only) ual CI (PVD ual-electric ential press	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI 6" ANSI 2B.1) CI (PVD ure gaug	/))x 12 550rie 2D.0/-L	E1 = c $E1 = c$ C $E2 = c$ C C $D = D$ C	BO terna Stainles or simila group 3 Superdu equest Duplex	al Pa s steel ar mate 304) is steel ar mate 316) uplex (c) (on rec	rts 1.4301 erial 1.4571 erial on juest)	Anally Pro R 10 = 16 = 3 = 4 = 5 = 6 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv Flange Clamp c	BOX Dtiona d valve m e for drai	eal Ma N = NBR V = FPN E = EPD I Fittin hade of sta ning	terial (Viton) ¹ M			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three G2 = Thre	vection (read G2 "(si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / 1 re 1 only) N DN 150 / 1 re 1 only) ual CI (PVD ual-electric ential press ning contac ential press	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI 6" ANSI CI (PVD CI (PVD ure gaug ts ure gaug))))))))))))))))))))))))))	Inn $E1 = c$ $C(0)$ $E2 = c$ $C(0)$ $SD = C$ $D = C$ $D = C$ $C(0)$ $D = C$ $C(0)$	BO terna Stainles or simila group : Superdu equest Duplex	ustable	rts 1.4301 erial 1.4571 erial on juest)	Anally Prove 10 = 16 = 3 = 4 = 5 = 6 = 7 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv Flange Clamp c Special i (TRA)	BOX Dtiona d valve m e for drai	eal Ma N = NBR V = FPN E = EPD ade of stand ning n part wash	terial (Viton) ¹ M g ainless stee			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three C = DIN E = DIN E = C SIZE F = DIN (size C SIZE K = DIN (size C SIZE K = C SIZE	ection (read G2 " (si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 2 re 1 only) N DN 150 / re t 1 only) N DN 150 / re t 1 only) ual CI (PVD ual-electric ential press ning contac ential press ning contac	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI 6" ANSI 2B.1) CI (PVD ure gaug ts ure gaug ts))))))))))))))))))))))))))	Inn $E1 = c$ $C(0)$ $E2 = c$ $C(0)$ $SD = C$ $D = C$ $D = C$ $C(0)$ $D = C$ $C(0)$	BO terna Stainles or simila group : Superdu equest Duplex	ustable	rts 1.4301 erial 1.4571 erial on juest)	Anally Prove 10 = 16 = 3 = 4 = 5 = 6 = 7 = 8 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv Flange Clamp c Special i (TRA) Includin	BOX Dtiona d valve m e for drai onnectio ndustrial g solenoi	eal Ma N = NBR V = FPN E = EPD ade of stand ning n part wash d technolo	terial (Viton) ¹ M g ainless stee hers design			ATF-2. ATF- ATF-3. PLF1 PLF
G2 = Three G2 = Thre	ection (read G2 "(si: N DN 50 / 2 N DN 80 / 3 re 1 only) N DN 100 / 3 re 1 only) N DN 150 / 1 re 1 only) N DN 150 / 1 re 1 only) U al CI (PVD ual-electric ential press ning contac ectric CI (PV	Code ze 2 only " ANSI " ANSI 4" ANSI 6" ANSI 6" ANSI 6" ANSI 2B.1) CI (PVD ure gaug ts ure gaug ts D 2C.0_))))))))))))))))))))))))))	Inn $E1 = c$ $C(0)$ $E2 = c$ $C(0)$ $SD = C$ $D = C$ $D = C$ $C(0)$ $D = C$ $C(0)$	BO terna Stainles or simila group : Superdu equest Duplex	ustable	rts 1.4301 erial 1.4571 erial on juest)	Anally Pri R 10 = 16 = 16 = 5 = 6 = 7 = 8 =	essure anges = PN 10 = PN 16 = PN 16 Air-blee Ball valv Flange Clamp c Special i (TRA) Includin Height a	BOX Dtiona d valve m e for drai onnectio ndustrial g solenoi adjustable	eal Ma N = NBR V = FPN E = EPD ade of stand hade of stand n part wash d technologe a legged	terial (Viton) ¹ M g ainless stee hers design			ATF-2. ATF- ATF-3. PLF1 PLF


¹For reservoirs made of stainless steel 1.4571 or similar material (group 316), use NBR or EPDM sealing material preferably

Max. 232 psi 16 bar

Filter Housing, one-part, stainless steel

NOTES:


The dimensions indicated have ± 10 mm tolerances.
 Subject to technical modifications.

Contact Factory for Dimensional Drawing.

Filter Housing Specifications

Filtration Rate:	1-90 μm
Operating Rate:	Carbon 33°F - 140°F (1°C - 60°C) Stainless 33°F - 194°F (1°C - 90°C)
Housing Material:	Stainless Steel Carbon Steel
Flow Rate Q max:	5150 gpm (1170 m³/h)
Pressure Rating:	87 or 145 or 230 psi (6 or 10 or 16 bar)
Connections Inlet/Outlet:	6" - 16" Flange (150-400 DIN)
Connection Discharge Line:	G1" In-Line Version G1/2 Outlet Version Downward 2" (DN50)
Filter Area:	Contact Factory
Weight:	Contact Factory
Volume:	Up to 350 gal (1330 L)

Process Inline Filter

Clogging Indicators for Process Filters

0-6092 psi 0-420 bar

General

The PVD Clogging Indicators for Process Filters are designed to indicate visually and/or electronically when the filter elements must be cleaned or changed. The use of clogging indicators guarantees both the operational safety of the system and the efficient utilization of the filter elements.

Seals

V (=Viton) or T (=FEP encapsulated)

Construction

Differential pressure indicators are used on all process filters. They react to the pressure differential between the filter inlet and filter outlet, which rises as the level of contamination in the element increases.

Simplest fitting of the differential pressure indicator: G1/2" cavity (acc. Schroeder's works standard HN 28-22)

The differential pressure indicator type V01 is piped up separately.

For duplex filter housings, the differential pressure indicators and connected using an adapter block.

Special Indicators

Electrical ATEX indicators: Optional: electrical indicator for process filters for use in potentially explosive atmospheres subject to the ATEX equipment directive 94/9/EC and the ATEX operator directive 1999/92/EC.

Torque Values - Differential Pressure Indicators

Note: The clogging indicators must only be tightened or adjusted on the spanner flats.

PVDB.1:	SW27
PVDC.0:	SW30
PVDD.0/L:	SW30
max. torque value	: 100 Nm

Clogging Indicators According To Filter Type

	Filter Types								
Туре	PRFL PRFLD	PRFS PRFSD	PFM PFH	EDF	PMRF PMRFD				
PVDB	•	•	•	•	•				
PVDC	•	•	•	•	•				
PVDD	•	•	•	•	•				
V01VZ	•	•	On Req	uest	•				
Differential Pressure Gauge	•	•	On Req	uest	•				

PVD **Clogging Indicators for Process Filters**

Type Of Indication:	Visual, red/green Automatic reset	band	PVD x B.x	RF3 — RF3-8
Weight:	110 g			DEC
Cracking Pressure Or Indication Range:	1 bar <u>+</u> 10% 1.5 bar <u>+</u> 10% 2 bar <u>+</u> 10%	3 bar <u>+</u> 10% 5 bar <u>+</u> 10% 8 bar <u>+</u> 10%		RF5 RF7
Perm. Operating Pressure:	6092 psi (420 ba	ır)		
Perm. Temperature Range:	-20°C to 100°C			RF10
Thread:	G 1/2			
Max. Torque Value:	100 Nm			RF4-1
Switching Type:	-			
Max. Switching Voltage:	-			RF4-2
Electrical Connection:	-			
Max. Switching Voltage At Resistive Load:	-			RF4-3
Switching Capacity:	-			
Protective Class Acc. DIN 40050:	-			RF12
Type Of Indication:	Electrical switch		PVD x C.x	RF14
Weight:	220 g			
Cracking Pressure Or Indication Range:	1 bar <u>+</u> 10% 1.5 bar <u>+</u> 10% 2 bar <u>+</u> 10%	3 bar ± 10% 5 bar ± 10% 8 bar ± 10%		BTU
Perm. Operating Pressure:	6092 psi (420 ba	ır)		ATF-1
Perm. Temperature Range:	-20°C to 100°C			
Thread:	G 1/2			ATF-2
Max. Torque Value:	100 Nm			
Switching Type:	N/C or N/O (char	nge-over contacts)		ATF-2.5
Max. Switching Voltage:	230 V			
Electrical Connection:		M20x1.5 acc. EN 50262 or acc. DIN 43650		ATF-3
Max. Switching Voltage At Resistive Load:	60 W = 100 VA ~			ATF-3.5
Switching Capacity:	Ohmic 3 A at 24 Ohmic 0.03 to 5	V = A at max. 230 V ~		ATF-4
Protective Class Acc. DIN 40050:	IP 65 (only if the fitted correctly)	connector is wired and		PLF1
Type Of Indication:	Visual indicator a	and electrical switch	PVD x D.x / -L	PVD
Weight:	250 g		D.X / -L	
Cracking Pressure Or Indication Range:	1 bar <u>+</u> 10% 1.5 bar <u>+</u> 10% 2 bar <u>+</u> 10%	3 bar <u>+</u> 10% 5 bar <u>+</u> 10% 8 bar <u>+</u> 10%		PVD
Perm. Operating Pressure:	6092 psi (420 ba	ır)		
Perm. Temperature Range:	-20°C to 100°C			
Thread:	G 1/2			
Max. Torque Value:	100 Nm			
Switching Type:	N/C or N/O (char	nge-over contacts)		
Max. Switching Voltage:	24, 48, 110, 230 insert	V depending on the light		
Electrical Connection:		M20x1.5 acc. EN 50262 or acc. DIN 43650		
Max. Switching Voltage At Resistive Load:	60 W = 100 VA ~			
Switching Capacity:	Ohmic 3 A at 24 Ohmic 0.03 to 5	V = A at max. 230 V ~		
Protective Class Acc. DIN 40050:	IP 65 (only if the fitted correctly)	connector is wired and		

PVD Clogging Indicators for Process Filters

V01 x VZ.x		Type Of Indication:	Visual/analogue indicator and 1 electrical switching contact at 75% and 100% of the cracking pressure
		Weight:	650 g
		Cracking Pressure Or Indication Range:	
		Perm. Operating Pressure:	2321 psi (160 bar)
		Perm. Temperature Range:	-20°C to 100°C
		Thread:	G 1/4
		Max. Torque Value:	-
		Switching Type:	75% - N/O contact 100% - N/C contact
		Max. Switching Voltage:	250 V
		Electrical Connection:	Threaded connection M20x1.5 acc. EN 50262
		Max. Switching Voltage At Resistive Load:	75% contact 100% contact 120 W = 30 W = 120 VA ~ 60 VA ~
		Switching Capacity:	Ohmic 2.5 A at 24 V Ohmic 1 A at 250 V
		Protective Class Acc. DIN 40050:	IP 55
DS11	Ś	Type Of Indication:	2 microswitches, 1-pole change-over contacts, can be adjusted manually to recommended set values
	Sum	Weight:	1.2 - 3.5 kg
		Cracking Pressure Or Indication Range:	0 - 1.6 bar 0 - 4 bar on request
		Perm. Operating Pressure:	363 psi (25 bar); 580 psi (40 bar) on request
		Perm. Temperature Range:	-10°C to 100°C
		Thread:	G 1/4
		Max. Torque Value:	-
		Switching Type:	Change-over contacts
		Max. Switching Voltage:	U~max = 250 V AC U~max = 3- V DC
		Electrical Connection:	Hard-wired numbered cable, cable connector, 7 pole plug-in connection
		Max. Switching Voltage At Resistive Load:	Imax = 5 A, Pmax = 250VA, Imax = 0.4 A, Pmax = 10 W
		Switching Capacity:	-
		Protective Class Acc. DIN 40050:	IP 55

Clogging Indicators for Process Filters PVD

How to Build a Valid Mode BOX 1 BOX 2 BOX 3 BOX 3 PVD	el Number for a BTU: 30X 4 BOX 5		Filter RF3 - Model Number
	BOX 4 BOX 5		Selection
PVD 2 D.	0 -L24 = PVD-2-D0 / -L24		RF
BOX 1	BOX 2	BOX 3	RF1
Unit Type	Cracking Pressure	Clogging Indicator	RF4-
PVD = Clogging indicator	0.8 = +0.8 bar (only for V01 indicator)	B. = Visual indicator with automatic reset	
V01 = Clogging indicator	1 = +1 bar (PVD indicator)	C. = Electrical indicator	RF4-
	1.5 = +1.5 bar (PVD indicator)	D. = Visual/electrical indicator	
	2 = +2 bar (all clogging indicators) 3 = +3 bar (PVD indicator)	VZ. = Visual/analogue indicator with 75% and 100% switch contacts	RF4
	4.3 = +4.3 bar (only for V01 indicator)		RF1
	5 = +5 bar (only for PVD indicator) 8 = +8 bar (only for PVD indactor)		RF1
BOX 4	BOX 5		ВТ
Modification Numb	Complementary Datalla		ATF
0 = All clogging indicators			
1 = Only B. type	-L48 = Light with 48 V		ATF
	-L110 = Light with 110 V		ATF-2
	-L220 = Light with 220 V		AIT-2
			ATF
			ATF-3
			ATF
			PLF
			PLI
			_
			PVI

Notes Section:	

Bag Housings and Elements

Bag Housing

Welded Bags

Schroeder Process Filtration offers a complete line of bag elements and housings to fit a wide variety of applications. From single bag housings, to high flow multiple bag housings, Schroeder has an economical filtration solution to fit nearly any application.

The disposable bag elements offered by Schroeder Process Filtration come in a wide variety of materials, sizes and styles. Bag styles include: steel ring bags (stainless steel optional) that are sewn into top of bag, and plastic flange bags that have flange sewn at top of bag and draw string. A multitude of options are available - call factory for details. Polyester and polypropylene felt can be used for filtration as low as 1 micron while monofilament and multifilament bags can be used for more coarse filtration. Felt bags are either singed or glazed to prevent fiber migration on the clean side of the filter.

Our bags are made in standard industry sizes from 1 through 12. We also have commercial size bags available with a snap band support ring. The seams on the bags are either sewn or welded depending upon the systems requirements. Welded bags offer:

- No needle holes
- No thread migration
- Strong, even sealing of the material

Schroeder Process Filtration bag housings can handle flows as low as 20 gpm and as high as several thousand gpm. Single bag housings are rated for either 100 psi service or 150 psi. All of our multiple bag housings and duplex bag housings are rated at 150 psi. Multiple bag housings are manufactured to hold 2 bags to 10 bags and more. Housings are made from either carbon steel or electro-polished stainless steel. ASME section VII U-stamped housings are available upon request.

Schroeder Industries has long been known for innovation to meet customer needs. Contact the factory if you have an application that requires special consideration and designs. Multiple housings can be skid mounted with integrated valves, sensors and controls to meet your specific needs.

Our bag systems provide efficient and economical filtration. Some advantages to bag filtration are:

- Positive seal to assure zero fluid bypass
- Quick and easy installation
- Handles provide easy removal from housings
- High dirt holding capacity
- Sturdy construction to prevent bags from failing in operation
- 100% incinerable

Bag Housings and Elements

Typical Products Filtered

- Abrasives
- Adhesives
- Aerosol Products
- Chemicals
- Cleaning Fluids
- Coolants
- Cutting Fluids
- Detergents
- Dyestuffs
- Fabric Coatings
- Food Products

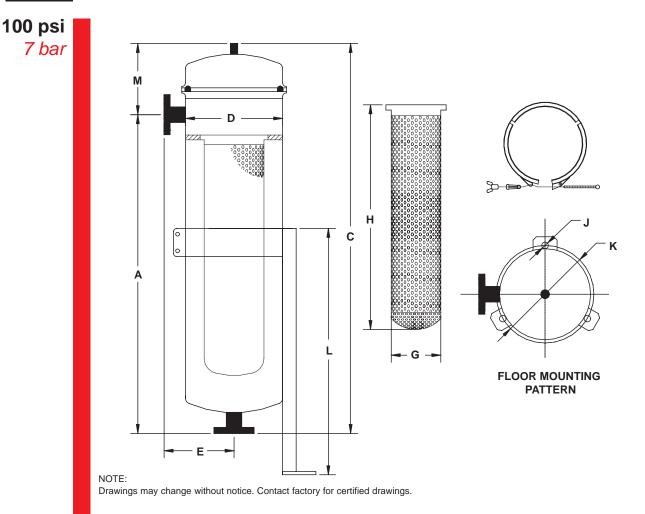
- Industrial Coatings
- Juices
- Lacquers
- Latices
- Liquids of all types
- Paints
- Paper Coatings
- Petroleum Products
- Pigments
- Pharmaceuticals
- Plasticizers

- Plastisols
- Printing Inks
- Process Water
- Polymer Solutions
- Roller Coatings
- Textile Chemicals
- Vegetable Oils
- Vinegar
- Waxes
- And Many Other Products

STEEL

MAKING

CHEMICAL PROCESSING


INDUSTRIAL MACHINE TOOL

MINING POWER TECHNOLOGY GENERATION

PULP & PAPER

WASTE WATER TREATMENT

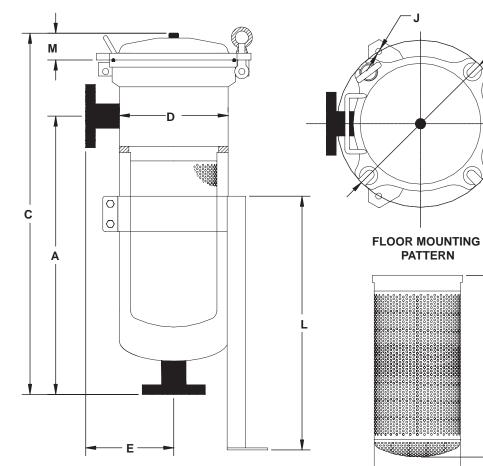
BH1 Single Bag Housings - 100 psi

Dimensions BH1 100 psi

Model	Bag Size	A inches (mm)	C inches (mm)	D ø inches (mm)	E inches (mm)	G ø inches (mm)	H inches (mm)	J ø inches (mm)	K ø inches (mm)	L inches (mm)	M inches (mm)
BH1	1	21.65 (550)	29.13 (740)	9.13 (232)	6.93 (176)	6.77 (172)	13.78 (350)	0.39 (10)	12.72 (323)	20.47 (520)	7.48 (190)
BH1	2	39.56 (1050)	47.04 (1195)	9.13 (232)	6.93 (176)	6.77 (172)	28.74 (730)	0.39 (10)	12.72 (323)	20.47 (520)	7.48 (190)
BH1	3	14.17 (360)	21.18 (538)	7.08 (180)	5.90 (150)	3.86 (98)	7.87 (200)	0.39 (10)	9.92 (252)	13.78 (350)	7.00 (178)
BH1	4	19.48 (495)	26.49 (673)	7.08 (180)	5.90 (150)	3.86 (98)	12.20 (310)	0.39 (10)	9.92 (252)	13.78 (350)	7.00 (178)

Specifications

Max. Working Pressure:	100 psi (7 bar)			
Max. Working Temperature:	167°F (75°C)			
Support Leg:	Adjustable			
Lid Closure:	Threaded Clamp			
	BH1 - 1	BH1 - 2	BH1 - 3	BH1 - 4
Max. Flow:	90 gpm (333 L/min)	200 gpm (750 L/min)	20 gpm (75 L/min)	45 gpm (167 L/min)
Housing Volume:	7.13 gal (27 L)	12.15 gal (46L)	2.90 gal (11 L)	3.70 gal (14 L)
Empty Weight:	46 lbs. (21 kg)	57 lbs. (26 kg)	31 lbs. (14 kg)	33 lbs. (15 kg)


Single Bag Housings -150 psi

Κ

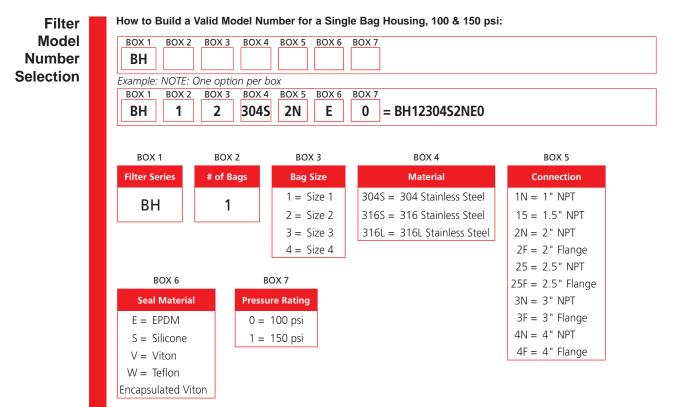
н

G

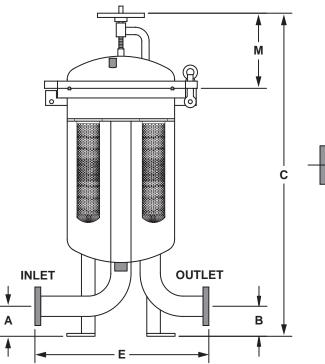
NOTE:

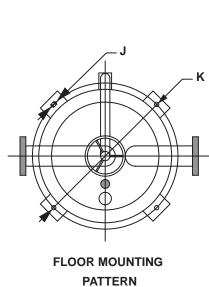
Drawings may change without notice. Contact factory for certified drawings.

Model	Bag Size	A inches (mm)	C inches (mm)	D ø inches (mm)	E inches (mm)	G ø inches (mm)	H inches (mm)	J ø inches (mm)	K ø inches (mm)	L inches (mm)	M inches (mm)
BH1	1	21.65 (550)	29.13 (740)	8.50 (216)	6.61 (168)	6.77 (172)	13.78 (350)	0.39 (10)	13.07 (332)	19.84 (504)	2.56 (65)
BH1	2	36.61 (930)	44.09 (1120)	8.50 (216)	6.61 (168)	6.77 (172)	28.74 (730)	0.39 (10)	13.07 (332)	22.72 (704)	2.56 (65)
BH1	3	13.78 (350)	19.49 (495)	5.51 (140)	5.32 (135)	3.82 (97)	7.87 (200)	0.39 (10)	8.31 (211)	13.78 (350)	1.58 (40)
BH1	4	17.72 (450)	23.43 (595)	5.51 (140)	5.32 (135)	3.82 (97)	12.20 (310)	0.39 (10)	8.31 (211)	13.78 (350)	1.58 (40)


Max. Working Pressure:	150 psi (10 bar)			
Max. Working Temperature:	167°F (75°C)			
Support Leg:	Adjustable			
Lid Closure:	Swing Bolts			
	BH1 - 1	BH1 - 2	BH1 - 3	BH1 - 4
Max. Flow:	90 gpm (333 L/min)	200 gpm (750 L/min)	20 gpm (75 L/min)	45 gpm (167 L/min)
Housing Volume:	6.07 gal (23 L)	9.77 gal (37 L)	1.66 gal (6.3 L)	2.06 gal (7.8 L)
Empty Weight:	75 lbs. (34 kg)	95 lbs. (43 kg)	40 lbs. (18 kg)	46 lbs. (21 kg)

150 psi ^{BH1} 10 bar
BH1 150 psi
BH2- BH10
DBH2- DBH10
Micron- Rated/ OAB
PPH/PPA
BR


Dimensions BH1 150 psi


Specifications

BH1 Single Bag Housings -100 & 150 psi

Multi Bag Housings BH1 - BH14

296-1981 gpm *1500-7500 L/min* **150 psi**

10 bar

Multiple Bag Housing Dimensions

NOTE:			
D	141	 	

Drawings may change without notice	. Contact factory for certified drawings.
------------------------------------	---

Number of Bags	Available Porting (Flange)	A		В		с	;	E		øJ		øK		м	
		Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm
2	3"	4.25	108	4.25	108	56.02	1423	22.99	584	0.55	14	20.31	516	14.57	370
	4"	5.00	127	5.00	127	58.35	1482	25.98	660	0.55	14	20.31	516	14.57	370
3	3"	4.25	108	4.25	108	58.46	1485	27.01	686	0.55	14	24.33	618	16.02	407
	4"	5.00	127	5.00	127	60.79	1544	28.50	724	0.55	14	24.33	618	16.02	407
	3"	4.25	108	4.25	108	58.78	1493	27.48	698	0.55	14	27.72	704	16.14	410
4	4"	5.00	127	5.00	127	61.10	1552	29.02	737	0.55	14	27.72	704	16.14	410
	6"	5.98	152	5.98	152	65.43	1662	34.49	876	0.55	14	29.29	744	16.34	415
	3"	4.25	108	4.25	108	59.17	1503	28.50	724	0.55	14	29.29	744	16.34	415
6	4"	5.00	127	5.00	127	61.50	1562	30.04	763	0.55	14	29.29	744	16.34	415
	6"	5.98	152	5.98	152	65.43	1662	34.49	876	0.55	14	29.29	744	16.34	415
	4"	5.00	127	5.00	127	70.20	1783	34.02	864	0.55	14	37.87	962	23.27	591
8	6"	5.98	152	5.98	152	72.52	1842	39.02	991	0.55	14	37.87	962	21.46	545
	8"	7.24	184	7.24	184	80.63	2048	41.22	1047	0.55	14	37.87	962	25.59	650
40	6"	5.98	152	5.98	152	79.21	2012	42.99	1092	0.55	14	41.89	1064	26.97	685
10	8"	7.24	184	7.24	184	83.19	2113	42.01	1067	0.55	14	41.89	1064	26.97	685
	10"	8.50	216	8.50	216	89.25	2267	47.99	1219	0.55	14	47.83	1215	27.95	710

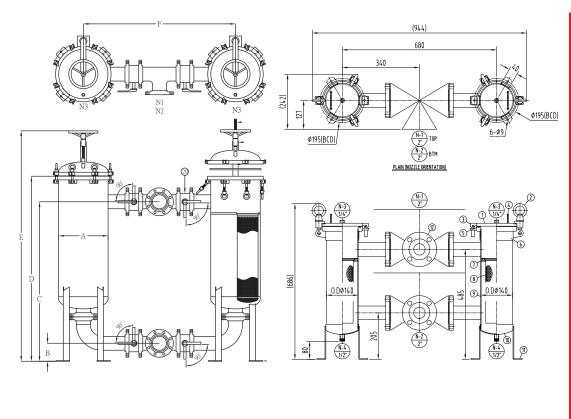
Specifications

Max. Working Pressure:	150 psi (10 bar)
Max. Working Temperature:	167°F (75°C)
Support Legs:	Fixed
Lid Closure:	Swing Bolts

BH1 - BH14

Multi Bag Housings

Housing Flow and Volume


Number of Bags	Max	Flow	Empty	Weight	Housing Volume		
	GMP	L/Min	lbs	kg	Gallons	Liters	
2	396	1500	214	97	30.64	116.00	
	396	1500	225	102	30.91	117.00	
3	594	2250	276	125	49.66	188.00	
	594	2250	287	130	49.93	189.00	
	793	3000	355	161	64.46	244.00	
4	793	3000	373	169	64.72	245.00	
	793	3000	454	206	73.70	279.00	
	991	3750	437	198	73.18	277.00	
6	1189	4500	445	202	73.44	278.00	
	1189	4500	454	206	73.70	279.00	
	1387	5250	992	450	129.18	489.00	
8	1585	6000	992	450	129.71	491.00	
	1585	6000	1014	460	130.24	493.00	
	1783	6750	1301	590	174.88	662.00	
10	1981	7500	1323	600	175.41	664.00	
	1981	7500	1576	715	225.60	854.00	

Filter Model Number Selection How to Build a Valid Model Number for a Multi-Bag Housing, 150 psi:

BOX 1 BH	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7
Example:	NOTE: C	ne optic	on per bo	ЭХ		
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7
BH		2	304S	4F	Г	1 = BH42304S4FE1

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	# of Bags	Bag Size	Material	Connection
BH	2	2 = Size 2	304S = 304 Stainless Steel	3F = 3" Flange (2, 3, 4 and 6 bags)
БП	3		316S = 316 Stainless Steel	4F = 4" Flange (2, 3, 4, 6 and 8 bags
	4		316L = 316L Stainless Steel	6F = 6" Flange (4, 6, 8, and 10 bags
	5			8F = 8" Flange (8 & 10 bags)
	6			10F = 10" Flange (10 bags)
	7			
	8			
	9			
	10			
	11			
	12			
	13			
L	14			
BOX 6		BOX		
Seal Material	F	Pressure Rating		
E = EPDM		1 = 150 psi		
S = Silicone		'		
V = Viton				
W = Teflon				
Encapsulated Vit	on			

Duplex Multi Bag Housings

A Inches (mm)	B Inches (mm)	C Inches (mm)	D Inches (mm)	E Inches (mm)	F Inches (mm)	G Inches (mm)	N1	N2	N3
16	6	52	60	75	49	20	Inlet 3 /	Outlet 3 /	Vent .5 /
(406)	(148)	(1310)	(1520)	(1893)	(1250)	(516)	150P SORF	150P SORF	PT F

Max. Working Pressure:	150 psi (10 bar)	
Max. Working Temperature:	167°F (75°C)	
Support Legs:	Adjustable	
Lid Closure:	Swing Bolts	

DBH1 -DBH10

792-3962 gpm 3000-15,000 L/min

150 psi 10 bar

Dimensions

Specifications

DBH1 -DBH10

Duplex Multi Bag Housings

How to Build a Valid Model Number for a Duplex Bag Housing, 150 psi:

BOX 1 BOX 2 DBH Example: NOTE: BOX 1 BOX 2 DBH 4	One optior BOX 3	n per box	$\begin{array}{c c} BOX & BOX & 7 \\ \hline \\ BOX & 6 \\ \hline \\$	E1
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	# of Bags	Bag Size	Material	Connection
DBH	1 2 3 4 5 6 7 8 9 10	2 = Size 2	304S = 304 Stainless Steel 316S = 316 Stainless Steel 316L = 316L Stainless Steel	3F = 3" Flange (2, 3, 4 and 6 bags) 4F = 4" Flange (2, 3, 4, 6 and 8 bags) 6F = 6" Flange (4, 6, 8, and 10 bags) 8F = 8" Flange (8 & 10 bags) 10F = 10" Flange (10 bags)
BOX 6		BOX		
Seal Materia E = EPDM S = Silicone V = Viton		Pressure Rating 0 = 100 psi 1 = 150 psi		

Filter and Media are sold separately.

W = Teflon Encapsulated Viton

Bag Element Operating Guidelines

BH1 Recommended change-out: It is recommended that a liquid filter bag be changed out when the differential pressure (ΔP) between BH1 the upstream and downstream sides reaches 20 - 25 psi. Although this is a rule of thumb, some 150 psi applications may require change-out at a ΔP well below 20 psi. Under no circumstances should ΔP be allowed to exceed 25 psi. BH2-**BH10** What is the product that needs to be filtered? Obtain all the details of the liquid/solid composition. You need to confirm the chemical compatibility to ensure the proper material is used for the bag, retainer type and the housing for the filter bags. What is the viscosity of the product to be filtered? Use a flow rate chart to find out the optimum operating parameters. Micron- Rated/ What is the pH level in order to choose the proper material for the filtration system? Is the product an acid with a pH of 1-7 or is it Alkaline 7-14? PPH/PPA What type of solids does the product contain? Are the solids crystalline or gelatinous? Crystalline solids can form a permeable layer on the filter media and gelatinous solids can form an impermeable layer that will cause blinding off of the filter media. What is the density of the solids? What is the PPM (parts per million) of the solids? What is the range of particle size? What size does the customer want to remove and at what efficiency? The range of particulate size is important in determining which micron rating your filter media should be? Filter bags can be made with nominally rated material or with high efficiency material. What is the flow rate of the product? The flow rate is critical information required when determining the size and number of bags required. Is it a continuous or batch process? This is important in order to determine the filter bag consumption. What is the operating pressure of the system? At what minimum and maximum potential pressure is the system designed to run? What is the acceptable pressure required? Filter bag differential pressure capacity is 20-25 psi. What is the temperature of the product being filtered? Temperature has an impact on the viscosity, the filter media and the O-rings. The temperature can even affect the corrosion rate of the housing. **Technical** Sizes Available Bag/Collar/Style Manufacturers Information for Size Sq. Diameter Length S SS DS Ρ FSI AFF GAF Strainrite Rosedale Commercial Liquid Bags Ft. (in.) (in.) Elements 1 2.5 7.06 16.5 ٠ • ٠ • ٠ • ٠ • • 2 32.0 • • . • • • • • 5.0 7.06 • ٠ ٠ ٠ 3 0.8 4.12 8.0 ٠ ٠ • 4 1.3 4.12 14.0 . . . • • .

7

8

9

C1

C2

1.3

2.0

3.3

2.5

5.0

5.5

5.5

55

7.31

7.31

15.0

21.0

31.0

16.5

32.5

• •

. .

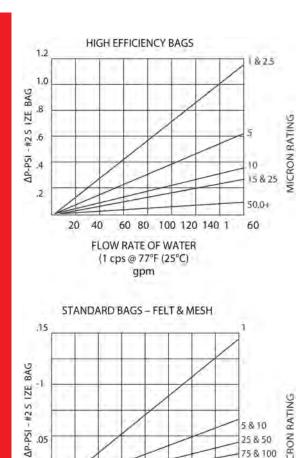
• •

٠

.

.

•


.

•

•

Bag Elements

Filter Bag Pressure **Drop PB**

Step 1 The graphs show the △PB produced by a #2 size bag for water, 1 cps @ 77°F (25°C). The pressure drop is determined from the type of bag, the micron rating and flow rate.

Step 2 Correct for bag size from the table below if the size is different than #2 size.

Bag Size	Dia X Length	Multiply By		
2	7.06 x 32	1.00		
9	5.5 x 32	1.50		
1	7.06 x 16	2.25		
8	5.5 x 21	2.25		
7	5.5 x 15	3.00		
4	4.15 x 14	4.50		
3	4.15 x 8	9.00		

Step 3 If the viscosity of the liquid is greater than 1 cps (water @ 77°F (25°C)). Multiply the result from step 2 by the proper correction factor from the chart below.

Viscosity (cps)	Correction Factor
50	4.5
100	8.3
200	16.6
400	27.7
800	50.0
1000	56.2
1500	77.2
2000	113.6
4000	161.0
6000	250.0
8000	325.0
10000	430.0

The value obtained in step 3, △PB is the clean pressure drop caused by the filter bag.

SUMMARY

1

.05

40

20

System Pressure Drop = $\Delta PS = \Delta PH + \Delta PB$

60 80 100 12 0 140 16 0

FLOW RATE OF WATER (1 cps @ 77°F (25°C) gpm

For new applications, the Δ PS should be 2.0 psi (0.14 bar) or less. For high contaminant loading applications, this value should be as low as possible. The lower this value is, the more contaminant a bag will hold. For applications with nominal contaminants, this value can go to 3.0 psi (0.21 bar) or more. Consult factory for specific recommendations when the clean ΔP exceeds 2.0 psi (0.14 bar).

MICRON RATING

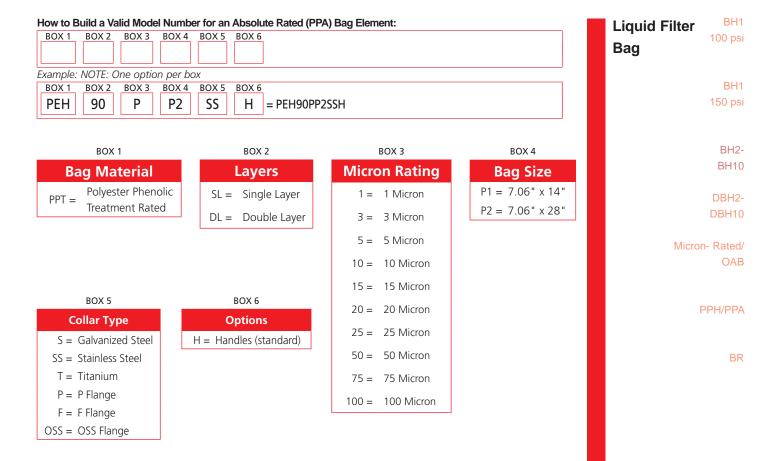
5 & 10

25 & 50 75 & 100 200+

Micron-Rated Bag Elements

low to Build	a Valid Mode								ed Ba	ng El	emei	nt:												BH1 100 psi
BOX 1 BO	DX 2 BOX 3	BC)X 4	В	OX	5 I	BOX	5																ioo psi
xample: NO	TE: One optio	n p	er b	ох																	J			BH1
BOX 1 BO	X 2 BOX 3)X 4		ΟХ	5 I	BOX	5																150 psi
TEF 2	25 S	Х	(1		F		А	= 1	EF2	5SX1	FA													
	BOX 1						BOX	(2					BO	X 3					вох	4	1			BH2-
Bag	Material				Μ	icr	on	Rat	ting	1	(Cov	er N	/late	erial			E	Sag S	Size)			BH10
PEF = Po	lyester Felt			ā					v for rating			P =	Plai	n, No	Cove	er	Si	ze l	Diame	ter	Leng (in)			DBH2-
PPF = Po	olypropylene F	elt									S	BP =		ın Boı yester			1	=	7.06	5	16.	5		DBH10
NOF = No	omex Felt										PI	EM =		vester			2	=	7.06	5	32		. Aller	Deteil
	olypropylene onofilament I	Mes	h										Gla					=	4.12		8		WICC	on- Rated/ OAB
	/lon Monofila esh	imer	nt									S =	Sin	ged			4	=	4.12	2	14			
	olyester ultifilament N	/lesh	ר ו													-		=	5.5		15			PPH/PPA
	lon Multifilar	men	t														-	=	5.5		21			BR
M	esh								В	OX 6							9	=	5.5		31			BR
TEF = Ter	fion Felt								Ор	tio	ns						11	=	8		16			
	BOX 5					0 =	No		_								12	=	8		30			
	ar Type					Н =						n all fl	ange	&			C1	=	7.31		16.	5		
	andard Galvan eel Ring	Ized					rır		le ba	-				t			C2	=	7.31		32.	5		
SS = Sta	ainless Steel R	ling			W	/E =						Availa Plasti					X1	=	4.35	5	8			
DS = Dra	aw String				E	EB =	Ed	ge B	indin	g							X2	=	4.35	5	14			
P = Pla	stic Flange					A =	Αι	uto S	eams	5							X01		6		22			
T = Tita	anium				ΤT	Ā =	Tu	rn, to	op st	itch,	auto	sean	ſ				701	_	0		22			
OSS = OS	S Flange				R	C =	Re	verse	e Col	lar														
NR = No	Ring				5	5B =	Sp	un B	ond	Cove	er													
F= Cu	istom				Μ	C =	М	esh (Cover															
	1			L.																			Technical	
Construction Felt	Fibers Polyester	PE	:=	1	3	5	10	15	25	50	75	100	125	150	175	200	250	300	400	600	800	1k	Technical Information	
	Polypropylene	PE						ľ			Í					Ĺ							for Liquid B	
	Nomex	NC		•								•											Elements	5
Monofilament	Polypropylene	PF	РМ									•		•		•	•	•		•				
Mesh	Nylon	NN	ИΟ			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		
Multifilament	Polyester	PE	М									•		•		•	•	•	•	•	•	•		
Mesh	Nylon	NN	ЛU									•		•		•	•	•	•	•	•	•		
Medias	Mineral Acids			Orga Aci	anic ids	:	All	alies	5		dizing cids	g	Veg	nimal jetabl ro-Oil	e		anic vents	Oı	Miro rganisi	ms	Ten Limits			
Polyester	Good			Go	od		Ģ	bood		G	ood		Exc	ellen	t	Exce	ellent	E	xcelle	nt	25	7°		
Polypropylene	Good		E	xce	llen	t	Ģ	lood		F	air		Exc	ellen	t	Go	bod	E	xcelle	nt	20	0°		
Nomex	Fair			Fa				bood			oor			ellen			ellent		xcelle		42			
Nylon	Poor			Fa	air		G	lood		P	oor		Exc	ellen	t	Exce	ellent	E	xcelle	nt	30	0°		

Polyester Phenolic Treatment (PEPT) Liquid Filter Bag


The Polyester Phenolic Treatment (PEPT) design incorporates single or dual layers of fully infused Phenolic Resin treated Polyester Felt for optimum performance. The PEPT's non-compressible depth fibers are more effective than conventional filters in retaining gel-like particles. Inline cartridges, which accumulate debris on the outside of the element and are more prone to debris falling off during change out, PEPT's filter bags contain the contaminants securly inside the bag, making filter change-out much cleaner.

The proven gradient density of a dual layer of the PEPT bag coupled with the increased surface area results in enhanced efficiencies and increased filter life. This not only ensures the integrity of the filtration process, it builds an affective pre-filter cake that promotes higher efficiencies without high pressure drop or loss of flow capacity.

Features:

- Micron Ratings from 1 to 100
- Broad chemical compatibility
- Handles on all bags
- Choice of Steel Ring or Plastic Flange
- Excellent removal of gel-like particles
- Disc bottom for ease of installation and fit in basket

Polyester Phenolic Treatment Liquid Filter Bag

Oil Absorbing Bag Elements

Materials of Construction

Schroeder's Oil Absorbing Bag Filters (OAB) are a cost-effective solution for removing oil from water while simultaneously filtering as low as 1 micron. The high capacity bag filter is designed with different layers of micro-fibers that not only retain oil, but increase overall efficiency to 95% or greater on microns ranging from 1 to 50. The overall construction of this filter bag has 30 plus square feet of media and can retain 10 pounds or more of oil depending on the micron. These bags are offered in standard bag size 1 or 2.

Efficiency

Hydraulic Systems

Food Processing

- Gelatinous Contaminants
- Cutting Oil
- Vacuum Pump

- Parts Washing
- Engine Oil/Transmission Oil
- Natural Gas Sweetening
- Natural Gas Dehydration
- Lubrication Oil

Model Code

How to B Element:		alid Mod	el Numb	er for a	n Oil Absorbing (OAB) Bag
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	
OAB					

Example:	NOTE: C	One optic	on per bo)X		
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5		
OAB	2H	1	SS	Н	= OAB2H1SSH	

BOX 1	BOX 2	BOX 3	BOX 4		
Bag Material	Micron Rating	Bag Size	Collar Type		
OAB	1H = 1m High Efficiency	1	S = Galvanized Steel		
	2H = 2m High Efficiency	2			
	5H = 5m High Efficiency		OSS = OSS Flange		
	10H = 10m High Efficiency		F = F Flange		
	25H = 25m High Efficiency		J		
	50h = 50m High Efficiency				

BOX 5 Options **H** = Handles (Standard)

High Efficiency Bag Elements

High efficiency bag elements are constructed of Polypropylene meltblown microfibers, allowing for very fine particles capture at high efficiencies. All high efficiency filter bags are over 90% efficient at their suggested micron rating. The bag construction makes this filter an easy to use, convenient, high performance alternative to filter cartridges. Maximum flow per bag is 60 gpm.

Product Number:	PPH1H	PPH3H	PPH5H	PPH10H	PPH25H
Dirt Holding Capacity grams of AC Test Dust Loaded to 35 psi at 12 gpm	74	150	160	175	195
Oil Holding Capacity grams of Mineral Oil at Saturation	528	657	690	726	798

Product Number	Suggested Application Rating	Efficiency	
PPH1H	1.0 micron	93.00%	
PPH2H	2.0 micron	94.00%	
PPH5H	5 micron	94.00%	
PPH10H	10 micron	94.00%	
PPH25H	25 micron	97.00%	
PPH50H	50 micron	97.00%	

How to Build a Valid Model Number for a High Efficiency (PPH) Bag Element:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5	
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5	
PEH 5H 3 F H	= PEH5H3FH

	BOX 1		BOX 2	BOX 3	BOX 4	
	Bag Type		icron Rating	Bag Size	Collar Type	
PE	H = Polyester High	1H =	1m High Efficiency	1	S = Galvanized Steel	
	Efficiency	2H =	2m High Efficiency	2	F = F Flange	
PP	Polypropylene High		5 ,		OSS = OSS Flage	
	Efficiency	5H =	5m High Efficiency			
		10H =	10m High Efficiency			
	BOX 5	25H =	25m High Efficiency			
	Options		50m High Efficiency			
H = Handles (standard)			90			

Model Code

Efficiency

Materials of Construction

Absolute Rated Bag Elements

Materials of Construction

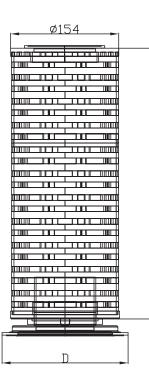
The Absolute Rated Bag Elements are constructed of polypropylene meltblown microfibers, allowing for very fine particles capture at high efficiencies. All Absolute Rated filter bags are over 97% efficient at their suggested micron rating. The bag construction makes this filter an easy to use, convenient, high performance alternative to filter cartridges. The filter contains over 30 sq. ft. of usable filter media. This compares with only 4.4 sq. ft. for most filter bags and only .65 sq. ft. for most cartridges. Maximum flow per bag is 40 gpm.

Product Number:	PPA3A	PPA5A	PPA13A	PPA32A
Dirt Holding Capacity grams of AC Test Dust Loaded to 35 psi at 12 gpm	225	275	525	625
Oil Holding Capacity grams of Mineral Oil at Saturation	1000	1250	2300	2500

Efficiency

PPH/PPA

Product Number	Suggested Application Rating	Efficiency	
PPA1A	1.0 micron	97.00%	
PPA2A	2.0 micron	97.00%	
PPA3A	3.0 micron	97.00%	
PPA5A	5.0 micron	97.00%	
PPA13A	13.0 micron	97.00%	
PPA32A	32.0 micron	97.00%	


Model Code

How to Build a Valid Model Number for an Absolute Rated (PPA) Bag Element:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6						
Example: NOTE: One option per box						
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6						
PEH 90 P P2 SS H = PEH90PP2SSH						

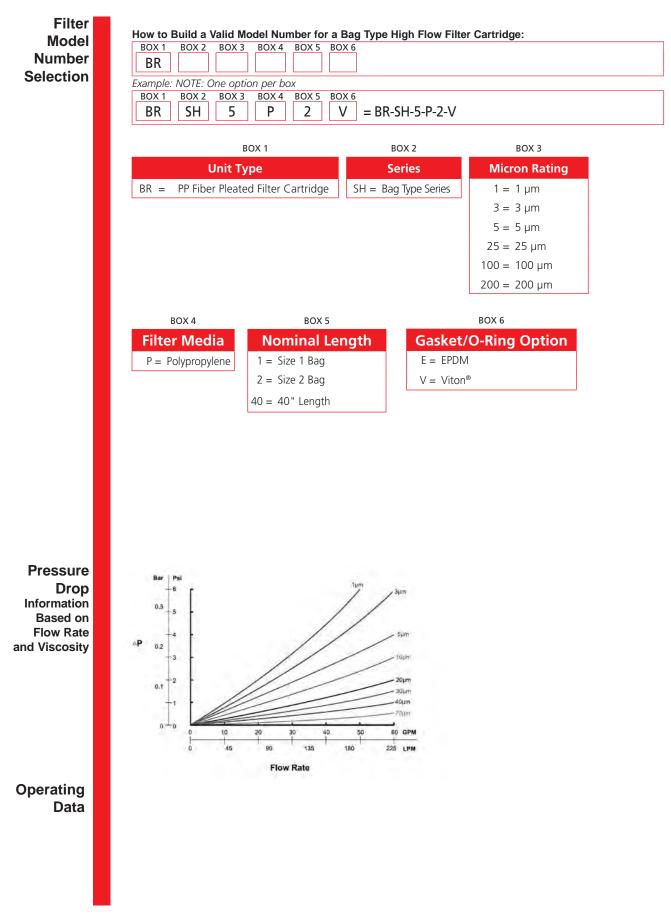
BOX 1	BOX 2	BOX 3	BOX 4
Bag Material	Micron Rating	Cover Material	Bag Size
PPA = Polypropylene Absolute Rated	1A = 1m Absolute	P = Plain, No Cover	2
Absolute Rateu	2A = 2m Absolute		
	3A = 3m Absolute		
	5A = 5m Absolute		
	13A = 13m Absolute		
	32A = 32m Absolute		
BOX 5	50A = 50m Absolute		
Collar Type	75A = 75m Absolute		
SS = Stainless Steel	100A = 100m Absolute		
PP = Polypropylene	·		
P = P Flange	BOX 6		
F = F Flange	Options		
OSS = OSS Flage	H = Handles (standard)		

Bag Type High Flow Filter Cartridges

L: 16"=370 32"=634 D: 1# Flange =183mm 2# Flange =177mm

BR

Our Bag Type High Flow Filter Cartridges are made of pleated polypropylene depth media and are designed with inside-out flow direction which is correspondent with the bag filter. The cartridges satisfy processes requiring high purity and possess high flow rates and long service life. Innovative push-in flanges enable quick and convenient replacements into most commercial bag filter housings. With advantages of high flow rate and purity, fewer change outs and lower maintenance costs are required.


- Convertible into most commercial bag filter housings, providing cost-saving options without hardware change
- High surface area design provides high flow capacity and longer service life
- Innovative push-in flanges enable quick and convenient change outs
- Inside-out flow effectively traps contaminants inside the elements
- Manufactured by advanced thermal welding techniques, cartridges are free of binders and additives

Media:	Polypropylene
Micron Rating:	1, 3, 5, 25 - 100 μm, 200 μm
Gasket/O-Ring:	EPDM, Viton [®]
Inside Diameter:	3.5" (90mm)
Outside Diameter:	7.25" (184mm)
Max. Operating Temperature:	160°F (70°C)
Max. Differential Pressure:	75 psi at 68°F (5.1 bar at 29°C) 35 psi at 130°F (2.4 bar at 54°C)
Recommended Change Out Differential Pressure:	35 psi at 130°F (2.4 bar at 54°C)

Specifications

Description

Bag Type High Flow Filter Cartridges

Schroeder FSI Pall Crossover

Product Family	Pall FSI Product	Schroeder Replacement xx = Micron Rating
Felt Filter Bags PONG PENG		Standard Felt Filter Bags PPFxxG or PEFxxS
	POEX PEEX	Double layer felt bags PPFxxG or PEFxxS
	ВНТ	Standard Felt Liquid Bags NFO
Mesh Filter Bags	NMO	Standard Mesh Filter Bags NMO
	PEM	Standard Mesh Filter Bags PEM
	РМО	Standard Mesh Filter Bags PPM
Microfiber Filter Bags	POMF	Call for Quote
Seamless Bags	BOS	Call for Quote
Cartridges	VOREX (CMMF)	DCE

Notes Section:				

Cartridge Housings and Elements

Overview

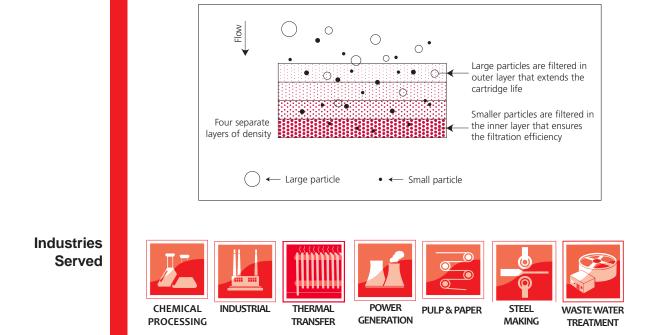
Features

Schroeder has depth filtration cartridges for fine filtration and the housings to fit. Standard cartridges are available in 10, 20, 30 and 40 inch lengths. These meltblown filters come in either a 2.5" or 4.5" diameter. Depth filter cartridges have larger openings towards the outside of the element and smaller openings near the center. This allows for higher dirt holding capacity to lengthen the life of the element.

Most common are the elements with a double open end (DOE). Cartridges with either a 222 o-ring seal or a FIN style are also available. The range of filtration on these elements is from 1 micron up to 100 microns. All of our elements are made from 100% pure polypropylene fibers to ensure high quality. Elements with center tubes for support are also available.

The housings for these elements are available with either a 100% polypropylene head and bowl or in electro-polished stainless steel.

The polypropylene housings accept either the 10" or 20" elements for both 2.5" and 4.5" diameter. The threaded head and bowl allow for quick and easy changing of the elements. Various sizes of NPT ports make installation quick and easy and allow flows up to 40 gpm depending upon the housing size. Because the housings are 100% polypropylene, they are tough and durable. The 2.5" housings are rated up to 125 psi (8.6 bar) at 140°F (60°C) while the 4.5" housings are rated for 100 psi (7.0 bar) at 140°F (60°C).


Stainless steel housings are used for higher flow rates and pressure up to 150 psi (10.0 bar) at 167°F (75°C). These larger housings hold seven elements in a circular array in all four standard lengths. The quick release clamp on the lid allows for easy changing of the elements while providing a tight seal. Each one comes standard with a gauge port in the lid. DOE and 222 style cartridges are accepted by these housings.

Both types of housing are durable, built to last in harsh conditions and have low clean pressure drops.

100% polypropylene construction

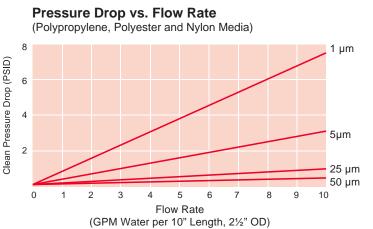
Max operating temperature 167°F (75°C)

- Max pressure drop 46 psi (3.2 bar) @ 68°F (20°C)
- Recommended cartridge replacement at 22 psi (1.5 bar)
- Special lengths and micron ratings available upon request
- 222 o-ring seal, FIN style end caps and center support tubes available upon request

SW Series Precision Wound Filter Cartridges

Benefits:

- Wide range of materials to ensure process compatibility
- Variety of sizes and configurations to ensure proper sizing, fit and sealing
- High sediment-holding-capacity for longer time between filter cartridges changes
- Continuous lengths up to 72" (183 cm)
- Technical Support
- Prompt deliveries


Applications:

- Potable waterProcess water
- Pre-filtration for membrane/reverse osmosis (RO) systems
- Food and beverage
- Chemicals, acids, bases
- Oils, fuels and solvents
- Plating solutions, electronics, circuit board
- Produced water and waste water; fracking

Media:	Polypropylene Cotton Acrylic Rayon Nylon Polyester Fiberglass
Cartridge ID:	1.09" (2.8 cm) nominal std. 1.22" (3.1 cm) and 1.5" (3.8 cm) optional
Cartridge OD:	2" (5 cm) to 41⁄2 (11.4 cm)
Length:	3" (7.6 cm) to 72" (183 cm) special lengths available
Efficiency:	90% nominal; 80% below 3 micron
Maximum Differential Pressure:	60 PSID (2 bar)
Recommended Max Change-Out Differential Pressure	30 PSID (2)

Note: Please contact factory for data on other media and fluids

Max Temperature						
Media Polypro Core		Polyester Core	Tin Core	SST Core		
Polyproplene	180°F	180° F	180° F	180° F		
Cotton	180°F	250° F	250° F	250° F		
Acrylic	180°F	250° F	250° F	250° F		
Rayon	180°F	275° F	275° F	275° F		
Nylon	180°F	275° F	275° F	275° F		
Polyester	180°F	300° F	300° F	300° F		
Fiberglass	180°F	300° F	400° F	750° F		

sw

DCE/ACE

SW

PP

CH1

CH3 - CH7

CH3 -CH12

CH13-CH173

RMF

SW Series Precision Wound Filter Cartridges

How to Build a Valid Model Numb BOX 1 BOX 2 BOX 3 BOX 4	BOX 5 BOX 6	BOX 7	
SW			
Example: NOTE: One option per boxBOX 1BOX 2BOX 3BOX 4	BOX 5 BOX 6	BOX 7	
SW 3 10 30	6 D	EC = SW310306DEC	
BOX 1	BOX 2	BOX 3	BOX 4
Cartridge Type	Micro	Filter Media L	ength
SW = Precision Wound Filter Cartr	idge 0.5	01 = FDA Polypropylene	3.75
		02 = Fibrillated Polypropylene	4
	3	03 = Industrial Polypropylene	4.75
	5	04 = Natural Cotton + Polyester 05 = White Cotton	5
	10	06 = FDA Bleached Cotton	6 9.75
	15	09 = Rayon	10
	20	10 = Teflon	12
	25	11 = Nylon	12.5
	30	13 = Polyester	19.5
	50	14 = Acrylic	20
	75	15 = Glass Fiber	24.5
	100	18 = Polyphenylene Sulfide PPS	30
	125	20 = Antimicrobial Polypropylene	36
	150	Heat resistant	40
	200	21 = meta-aramid Conex® (trademark of Teijin)	50
		33 = EcoWound™ filter*	72
BOX 5	BOX 6	BOX 7	
Core Type	Outside Dia	neter Options	
1 = 1" id Polypropylene	A = 2	N = Polyester Core Cover	
$2 = \frac{1}{1}$ id Glass Filled	B = 2 1/4"	NF = Care Care Care	onwove
2 = Polypropylene 3 = 1 " id Tinned Steel	C = 2 3/8"	NI = Core Cover NN = Nylon Core Cover	
4 = 1" id 304 SST	D = 2 1/2"	Y = Polypropylene Core Cover	
6 = 1" id 316 SST	E = 2 5/8"	2SP = 222 w/ plug	
7 = 1" id Nylon	G = 3"	2SD = 222 w/ disc	
8 = 1.22" id Polypropylene	H = 4" I = 4 1/4"		
	1 = + 1/+	6SP = 226 w/ plug	
9 = 1.5" id Polypropylene	J = 4 1/2 "		
9 = 1.5" id Polypropylene 10 = 1" id Teflon	J = 4 1/2"	6SD = 226 w/ disc	
9 = 1.5" id Polypropylene 10 = 1" id Teflon 11 = 1.5" id 304 SST	J = 4 1/2"	6SF = 226 w/ fin	
9 = 1.5" id Polypropylene 10 = 1" id Teflon 11 = 1.5" id 304 SST 12 = 1.75" id Polypropylene	J = 4 1/2"		
9 = 1.5" id Polypropylene 10 = 1" id Teflon 11 = 1.5" id 304 SST	J = 4 1/2"	6SF = 226 w/ fin	
9 = 1.5" id Polypropylene 10 = 1" id Teflon 11 = 1.5" id 304 SST 12 = 1.75" id Polypropylene	J = 4 1/2"	6SF = 226 w/ fin E = Extended Core	
9 = 1.5" id Polypropylene 10 = 1" id Teflon 11 = 1.5" id 304 SST 12 = 1.75" id Polypropylene	J = 4 1/2"	6SF = 226 w/ fin E = Extended Core EC = End Caps PVC	

Cartridge Housings and Elements DCE/ACE

	Media:	Polypropylene		SW
		100% Meltblowr	n Micro PP Fiber	DCE/ACE
Absolute	Micron Ratings:	1µm, 3µm, 5µm	n, 10µm, 20µm, 25µm, 30µm, 50µm,	DCE/ACE
		75µm, 100µm,	150µm	PP
	Inside Diameter:	,	,	CH1
	utside Diameter:			
	num Differential nd Temperature:	29 psi at 140°F	(2 bar at 60 °C)	CH3 - CH7
Flem	ent Change Out:	14 psi at 176°F		CH3 -CH12
Maximum Operatio	_			CH13-CH173
	Efficiency:			
	Eniciency.	99.90%		RMF
How to Build a Valid Model Num BOX 1 BOX 2 BOX 3 BOX 4 ACE Image: Constraint of the second seco	BOX 5 BOX 6	BOX 7	nts: 0252SDNA	Filter Model Number Selection
BOX 1	BOX 2	BOX 3	BOX 4	
Element	Micron Rating	Length (in.)	End Cap Code	
DCE = Polypropylene	S2 = 0.2 μm	10 = 10.0"	B = DOE w/ Gasket and Caps	
Coreless	S45 = 0.45 μm	20 = 20.0" C = 222 w/ Spear		
ACE = Polypropylene with core	$1 = 1 \mu m$	30 = 30.0" D = 222 w/ Closed Flat Cap		
Polypropylene	$2 = 2 \mu m$	40 = 40.0"	E = 222 w/ Spring	
	$5 = 5 \mu m$		F = 226 w/ Closed Flat Cap	
BOX 5	$10 = 10 \mu m$		G = 226 w/ Spear	
O-Rings	$20 = 20 \mu\text{m}$		H = 226 w/ Spring	
Omit = None	$40 = 40 \mu\text{m}$		J = Polypropylene Extender	
B = Buna N			L = Spring	
E = EPDM (EPR)	BOX 7		N = SOE Recessed Cap, internal 213 O-F	ling
S = Silicone	Certification		Omit = DOE for knife edge seal	
V = FKM Fluorolastomer	Omit = None		2SD = SOE, 222 O-ring seal, w/ flat top*	
	NA = NSF/ANSI 6	51 w/	2SF = SOE, 222 O-ring, w/ fin*	
	core only		2SPR = SOE, 222 O-ring seal, w/ spring top	e
			6SD = SOE, 226 O-ring seal, w/ flat top*	
			555 - 562, 226 6 hity scal, w hat top	
Filter and Media are sold se	eparately. 0.43			Filter Data
DCE210				. 1µ 3u
99.6	0.28			- σμ - 5μ
99				
Q 90	ΔP (psi)			25µ
95				50µ
8 8 8 9 9	0.14			⁻ 100μ
80				
70				
50	0.00			
1 5 10 20 40 50 60 PARTICLE SIZE (MICRONS)	2		3.7 4.2 4.8 5.3	
			Flow Rate (gpm)	ON 91

High Purity/Absolute Pleated Cartridges

Prefiltration

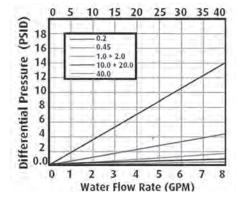
Wastewater

Process Water Fine Chemicals

35 psi 2.4 bar

PP

Our Pleated Polypropylene Cartridges are designed to hold 6.5 square feet of filtration media, making these a great value. These cartridges are constructed with 100% polypropylene materials and are assembled using the latest thermal bonding equipment. Efficiency Rating is 99.98% (ß5000).

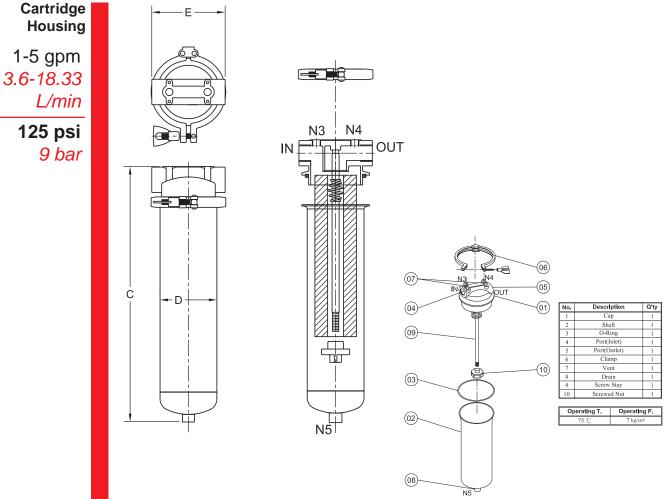

Typical Applications:

- Optimal for DEF Solutions
- Food and Beverage
- Photographic
- Deionized Water
- Reverse Osmosis Membrane

Specifications

Media:	Polypropylene
Material:	100% Meltblown Micro PP Fiber
End Caps:	Polypropylene
Center Core:	Polypropylene
Outer Support Cage:	Polypropylene
O-Rings/Gaskets:	Buna, Viton [®] , EPDM
Length:	10 to 40 in. (25.4 to 101.6 cm) nominal
Outside Diameter:	2.70 in. (7.0 cm) nominal
Element Change Out:	35 psi (2.4 bar)
Maximum Operating Temperature:	180°F (82°C)
Efficiency:	99.98%

Pressure Drop Information Based on Flow Rate and Viscosity


High Purity Pleated Polypropylene Cartridges

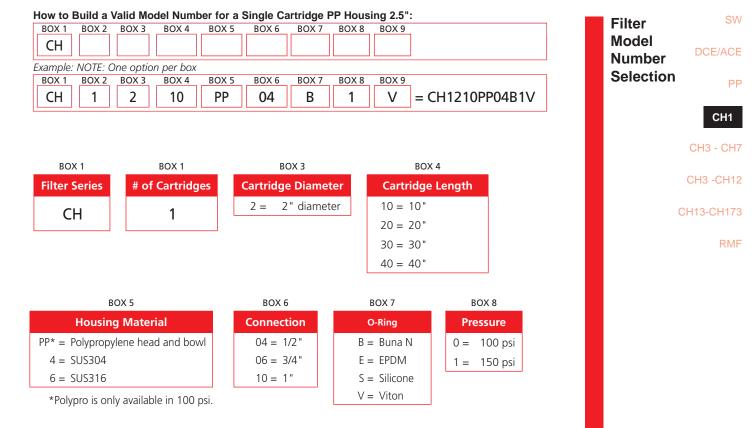
PP	BOX 5 BOX 6	ty Pleated Polypro	pylene Cartridge:	Filter SV Model Number DCE/AC Selection Pl CH
BOX 1	BOX 2	BOX 3	BOX 4	CH3 - CH
Element	Micron Rating	Length (in.)	End Cap Code	
PP = Pleated polypropylene	S2 = 0.2 µm	10 = 10.0"	B = DOE w/ Gasket and Caps	CH3 -CH1
High Efficiency	S45 = 0.45 µm	20 = 20.0"	C = 222 w/ Spear	CH13-CH17
PPA = Pleated polypropylene	1 = 1 µm	30 = 30.0"	D = 222 w/ Closed Flat Cap	
Absolute	$2 = 2 \mu m$	40 = 40.0"	E = 222 w/ Spring	RM
	$5 = 5 \mu m$		F = 226 w/ Closed Flat Cap	
	10 = 10 µm		G = 226 w/ Spear	
	$20 = 20 \mu m$		H = 226 w/ Spring	
	$40 = 40 \mu m$		J = Polypropylene Extender	
			L = Spring	
			$N = \frac{\text{SOE Recessed Cap, internal}}{213 \text{ O-Ring}}$	

PP

BOX 5	BOX 6
O-Rings	Options
B = Buna	I = Stainless Steel
E = EPDM	E = EPDM insert
S = Silicone	S = Silicone HP - Heavy Poly Core
V = Viton	
T = Teflon	
Encapsulated Viton	

CH1 Cartridge Housings and Elements

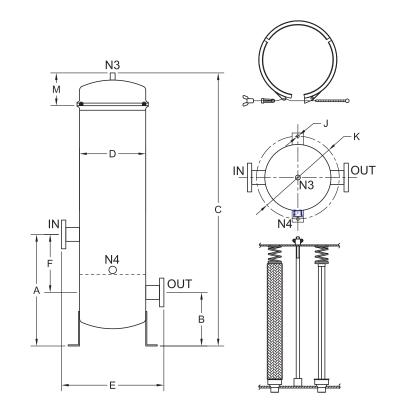
NOTE: Drawings may change without notice. Contact factory for certified drawings.


Dimensions

Model	C inch (mm)	D inch (mm)	E inch (mm)	N3/N4	N5
CH1210	15.8 (401.32)	3.5 (88.9)	4.5 (114.3)	1⁄4"	1⁄4"
CH1220	25.8 (655.32)	3.5 (88.9)	4.5 (114.3)	1⁄4"	1⁄4"
CH1230	35.8 (909.32)	3.5 (88.9)	4.5 (114.3)	1⁄4"	1⁄4"

Specifications

	CH12
Max. Flow Rate:	5-10 gpm (18.33 to 36.66 L/min
Max. Working Pressure:	100 psi (7 bar)
Max Temperature:	167°F (75°C)
Housing Material:	Polypropylene
O-Ring Material:	Buna N
Initial Pressure Drop:	1 psi at 10 gpm
Type of Element Accepted	DOE


Cartridge Housings and Elements CH1

BOX 9 Options N = Flat Bottom P = PR Button in CapV = Drain with Plug

CH3-CH7 Cartridge Housings and Elements

NOTE: Drawings may change without notice. Contact factory for certified drawings.

Dimensions

	Car	tridge	Α	В	С	D	E	F	J	к	м	N3	N4
	Qty	Length	inch (mm)	inch (mm)	inch (mm)	øinch (mm)	inch (mm)	inch (mm)	øinch (mm)	øinch (mm)	inch (mm)	inch	inch
CH3220	3	20	11.02 (280)	4.72 (120)	35.04 (890)	7.09 (180)	11.81 (300)	6.30 (160)	0.35 (9)	9.29 (236)	3.35 (85)	1⁄4	3⁄4
CH3230	3	30	11.02 (280)	4.72 (120)	45.08 (1145)	7.09 (180)	11.81 (300)	6.30 (160)	0.35 (9)	9.29 (236)	3.35 (85)	1⁄4	3⁄4
CH7220	7	20	11.02 (280)	4.72 (120)	35.04 (890)	9.13 (232)	13.86 (352)	6.30 (160)	0.35 (9)	9.29 (236)	3.35 (85)	1⁄4	3⁄4
CH7230	7	30	11.02 (280)	4.72 (120)	45.08 (1145)	9.13 (232)	13.86 (352)	6.30 (160)	0.35 (9)	9.29 (236)	3.35 (85)	1⁄4	3⁄4
CH7240	7	40	11.02 (280)	4.72 (120)	55.12 (1400)	9.13 (232)	13.86 (352)	6.30 (160)	0.35 (9)	9.29 (236)	3.35 (85)	1⁄4	3⁄4

Specifications

Number of Elements per Housing:	3 or 7 Elements, 2" Diameter
Max. Working Pressure:	100 psi (7 bar)
Max Temperature:	167°F (75°C)
Housing Material:	Stainless Steel (304 or 316)
Type of Elements Accepted:	DOE (Double Open Ended), -222 O-ring

Cartridge Housings and Elements

CH3-CH7

Flow Rate SW	Dry Weight	Flow Rate	Model #
and Weight	40 lbs (18kg)	0-26 gpm (100 l / min)	CH3220
	44 lbs (20kg)	0-40 gpm (150 l / min)	CH3230
PP	55 lbs (25kg)	0-62 gpm (233 l /min)	CH7220
0114	62 lbs (28kg)	0-92 gpm (350 l / min)	CH7230
CH1	68 lbs (31kg)	0-123 gpm (467 l / min)	CH7240
CH3-CH7			

CH3	-CH12

SW

CH13-CH173

RMF

Filter Model Number Selection

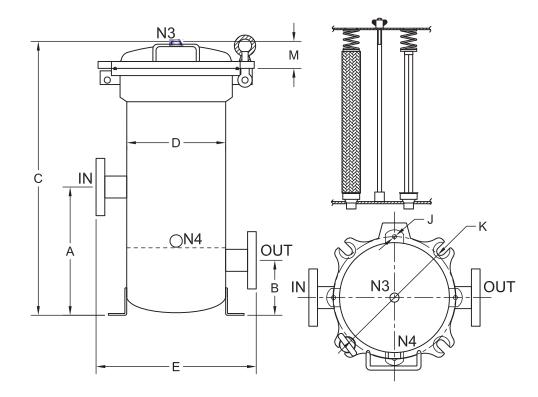
How to I	How to Build a Valid Model Number for a Multi-Cartridge Housing, 100 psi:								
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
СН									
Example:	NOTE: O	ne optio	n per box						
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
CH	4	2	10	6	15	В	0	7	= CH14210615B07

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	# of Cartridges	Cartridge Diameter	Cartridge Length
СН	3 = 3 pieces	2 = 2" diameter	05 = 5"
СП	4 = 4 pieces		10 = 10"
	12 = 12 pieces		20 = 20"
		I	30 = 30"
			40 = 40"

BOX 5	BOX 6	BOX 7	BOX 8
Housing Material	Connection	O-Ring	Pressure
4 = SUS304	10 = 1"	B = Buna N	0 = 100 psi
6 = SUS316	15 = 1.5"	E = EPDM	1 = 150 psi
7 = SUS316L	20 = 2"	S = Silicone	
	25 = 2.5"	V = Viton	
	30 = 3"		
	40 = 4"		

BOX 9
Options
1 = Standard Flat Gasket Double Open Ends & 2 - 222 O-ring Fin/Flat
7 = No Bayonet 2-226 O-ring Fin/Flat
9 = 2-226 O-ring Fin/Flat

NOTE: Elements must be purchased separately.


SCHROEDER INDUSTRIES | PROCESS FILTRATION

97

CH3-CH12 Cartridge Housings and Elements

150 psi 10 bar

NOTE: Drawings may change without notice. Contact factory for certified drawings.

Dimensions

	Car	tridge	A	В	c	D	E	J	ĸ	M	N3	N4
	Qty	Length	inch (mm)	inch (mm)	inch (mm)	øinch (mm)	inch (mm)	øinch (mm)	øinch (mm)	inch (mm)	inch	inch
CH3220	3	20	11.02 (280)	4.72 (120)	33.19 (843)	7.13 (181)	11.81 (300)	0.35 (9)	10.47 (266)	2.17 (55)	1⁄4	3⁄4
CH3230	3	30	11.02 (280)	4.72 (120)	43.23 (1098)	7.13 (181)	11.81 (300)	0.35 (9)	10.47 (266)	2.17 (55)	1⁄4	3⁄4
CH3240	3	40	11.02 (280)	4.72 (120)	53.27 (1353)	7.13 (181)	11.81 (300)	0.35 (9)	10.47 (266)	2.17 (55)	1⁄4	3⁄4
CH7220	7	20	11.02 (280)	4.72 (120)	33.58 (853)	9.13 (232)	14.09 (358)	0.35 (9)	11.34 (288)	2.56 (65)	1⁄4	3⁄4
CH7230	7	30	11.02 (280)	4.72 (120)	43.62 (1108)	9.13 (232)	14.09 (358)	0.35 (9)	11.34 (288)	2.56 (65)	1⁄4	3⁄4
CH7240	7	40	11.02 (280)	4.72 (120)	53.66 (1363)	9.13 (232)	14.09 (358)	0.35 (9)	11.34 (288)	2.56 (65)	1⁄4	3⁄4

Specifications

Number of Elements per Housing: 3	or 12 Elements, 2" Elements
-----------------------------------	-----------------------------

Max. Working Pressure:	150 psi (10 bar)
Max Temperature:	167°F (75°C)
Housing Material:	Stainless Steel (304 or 316)
Tune of Floweaute Accounted	DOE (Devide Onen Ended) 200 0 ring

Cartridge Housings and Elements CH3-CH12

CH3-CH12

CH13-CH173

RMF

Filter

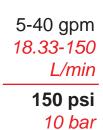
Model Number Selection

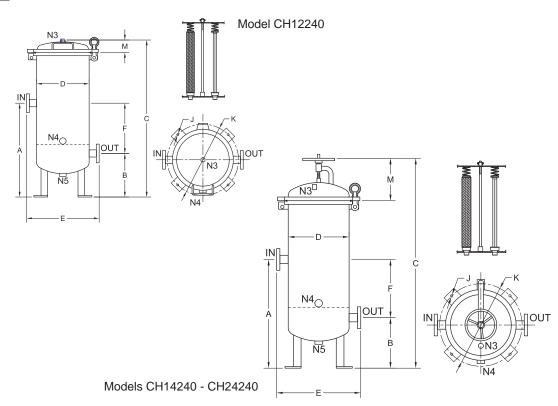
Flow Rate SW	Dry Weight	Volume	Flow Rate	Model #
Volume	66 lbs (30kg)	7.13 gal (27L)	0-26 gpm (100 l / min)	CH3220
and Weight DCE/ACE	77 lbs (35kg)	9.51 gal (36L)	0-40 gpm (150 l / min)	CH3230
PP	88 lbs (40kg)	11.88 gal (45L)	0-53 gpm (200 l / min)	CH3240
	77 lbs (35kg)	8.98 gal (34L)	0-62 gpm (233 I /min)	CH7220
CH1	88 lbs (40kg)	11.88 gal (45L)	0-92 gpm (350 l / min)	CH7230
CH3 - CH7	101 lbs (46kg)	14.52 gal (55L)	0-123 gpm (467 l / min)	CH7240

How to Build a Valid Model Number for a Multi-Cartridge Housing, 100 psi:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
СН									
Example:	NOTE: C)ne optio	on per box						
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
								1	
СН	Δ	2	10	6	15	В	0	7	= CH14210615B07

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	# of Cartridges	Cartridge Diameter	Cartridge Length
СН	3 = 3 pieces	2 = 2" diameter	10 = 10"
СП	4 = 4 pieces		20 = 20"
	—— Up To ——		30 = 30"
	12 = 12 pieces		40 = 40 "


BOX 5	BOX 6	BOX 7	BOX 8
Housing Material	Connection	O-Ring	Pressure
4 = SUS304	10 = 1"	B = Buna N	1 = 150 psi
6 = SUS316	15 = 1.5"	E = EPDM	
7 = SUS316L	20 = 2"	S = Silicone	
	25 = 2.5"	V = Viton	
	30 = 3"		
	40 = 4"		


BOX	9

Options
1 = Standard Flat Gasket Double Open Ends & 2 - 222 O-ring Fin/Flat
7 = No Bayonet 2-226 O-ring Fin/Flat
9 = 2-226 O-ring Fin/Flat

NOTE:	elements	must be	purchased	separately.
-------	----------	---------	-----------	-------------

CH13-CH173 Cartridge Housings and Elements

Dimensions

ns	Ca		Cartridge		В	с	D	Е	J	к	м	N3	N4
		Qty	Length	inch (mm)	inch (mm)	inch (mm)	øinch (mm)	inch (mm)	øinch (mm)	øinch (mm)	inch (mm)	inch	inch
	CH12240	12	40	27.56 (700)	13.78 (350)	68.03 (1728)	12.01 (305)	19.69 (500)	0.55 (14)	16.14 (410)	6.02 (153)	1⁄2	1
	CH14240	14	40	27.56 (700)	13.78 (350)	76.77 (1950)	15.98 (406)	23.86 (606)	0.55 (14)	20.31 (516)	14.96 (380)	1⁄2	1
	CH18240	18	40	27.56 (700)	13.78 (350)	76.77 (1950)	15.98 (406)	23.86 (606)	0.55 (14)	20.31 (516)	14.96 (380)	1⁄2	1
	CH20240	20	40	27.56 (700)	13.78 (350)	76.77 (1950)	15.98 (406)	23.86 (606)	0.55 (14)	20.31 (516)	14.96 (380)	1⁄2	1
	CH24240	24	40	27.56 (700)	13.78 (350)	76.97 (1955)	19.13 (486)	27.01 (686)	0.55 (14)	23.46 (596)	15.16 (385)	1⁄2	1

Specifications

Number of Elements per Housing:	12, 14, 18, 20, or 24, 2" Diameter
Max. Working Pressure:	150 psi (10 bar)
Max Temperature:	167°F (75°C)
Housing Material:	Stainless Steel (304 or 316)

*Max flow rate is dependent on type of media, particle selection required, fluid viscosity and volume of contamination.

Cartridge Housings and Elements CH13-CH173

	· · · · ·		iag							CIICO			
Model #		Flow R	ate		,	Volume	•	D	ry Weig	Jht		Flow Rate	SW
CH12240	CH12240 0-200 gpm (75		55 I / mir	n)	28.0	28.00 gal (107L)			187 lbs (85kg)			Volume	DCE/ACE
CH14240 0-240 gpm (900		00 I / mir	n)	50.0	0 gal (1	98L)	275 lbs (125 kg)				and Weight		
CH18240	CH18240 0-310 gpm (1170 l / min)			50.00 gal (198L) 275 lbs (125 kg)			5 kg)			PP			
CH20240	0-350) gpm (13	20 I / mi	in)	50.0	0 gal (1	98L)	275	lbs (12	5 kg)			0.1.1
CH24240	0-415	5 gpm (15	i65 l / mi	in)	75.0	0 gal (2	286L)	320	lbs (14	5 kg)			CH1
												(CH3 - CH7
												C	CH3 -CH12
												СН	113-CH173
												Filter Model	RMF
How to Build a V BOX 1 BOX 2	BOX 3 BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9				1		Number	
CH												Selection	
Example: NOTE: O	ne option per box												
BOX 1 BOX 2	BOX 3 BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9							
CH 4	2 10	6	15	В	0	7	= CH14	421061	5B07				
BOX 1	BOX 2			BOX 3			BOX 4						
Filter Series	# of Cartridg	es	Cartrid	ge Diam	eter	Car	tridge Le	ength					
CU	13 = 13 piec	es	2 =	2" diam	eter	10 =	= 10"						
СН	14 = 14 piec	:es				20 =	= 20"						
	15 = 15 piec	es				30 =	= 30"						
	—— Up To —					40 =	= 40"						
	173 = 173 pie												
L													
BOX 5	DOV			BOX 7		DO	V O						
	BOX			D-Ring			X 8						
Housing Materi 4 = SUS304	al Conne 10 =			= Buna N			sure						
4 = 303304 6 = SUS316	10 =			= EPDM		=	150 psi						
0 = 505310 7 = SUS316L	20 =			= Silicone									
, _ 3033102	20 =			= Viton									
	30 =		L										
	40 =												
	Z =												
	Z1 =	11"											
	Up ⁻	То——											
	Z5 =	15"											
	BOX 9												

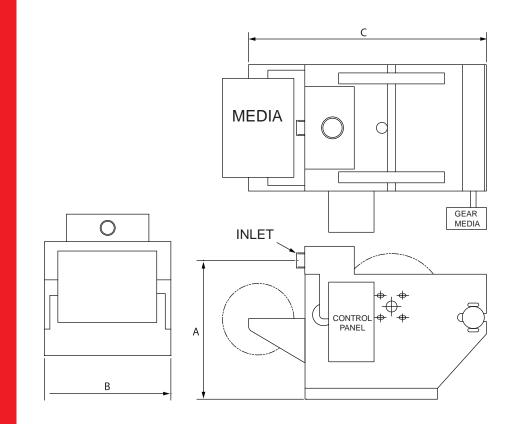
Options

- 1 = Standard Flat Gasket Double Open Ends & 2 222 O-ring Fin/Flat
- 7 = No Bayonet 2-226 O-ring Fin/Flat
- 9 = 2-226 O-ring Fin/Flat

Notes Section:

Rolling Media Filtration

70-600 gpm 268-2270 L/min

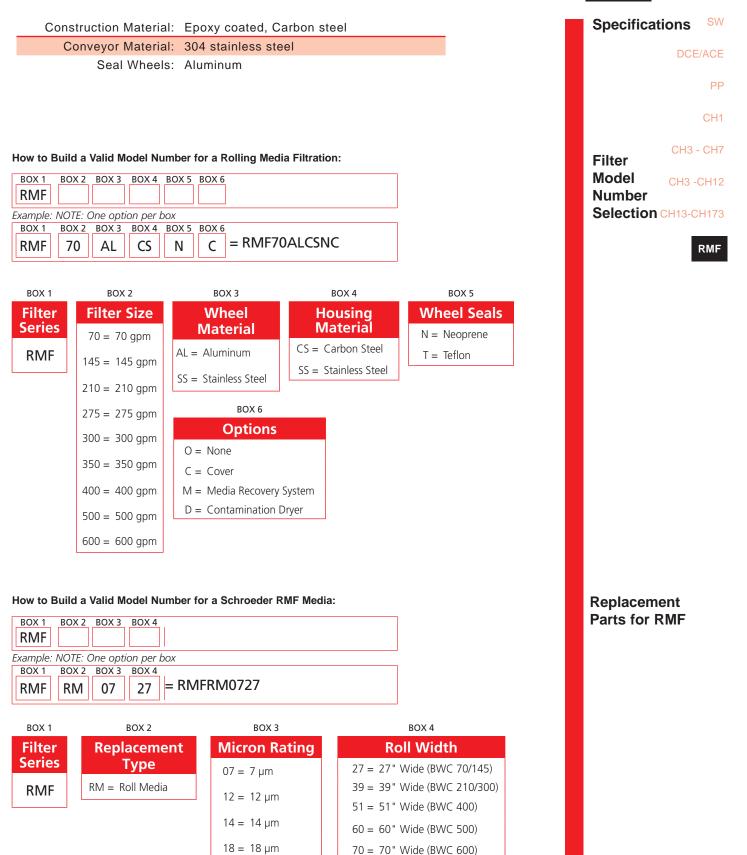


The Rolling Media Filter (RMF) provides a highly efficient and reliable means of removing solids from process liquids. This filter is a non pressurized system which is economical and easy to operate. It can handle occasional system upsets or overloads without blinding the filter media.

The RMF is a fully automatic system that ensures efficient cleaning of any process fluid. It optimizes the amount of media used at the same time. The solids are discharged as a cake for easy handling and disposal.

The liquid to be filtered is pumped or gravity fed into inlet. It is then distributed to the flood box, which slows the velocity and discharges the liquid over the entire width of the filter media. The liquid filters through the media, and the solids are left behind collecting on the filter media surface. The clean liquid is discharged through the outlet into a tank or discharged into an open system.

As the solids are collected on the filter media, the liquid level rises to a preset level. A level sensor initiates an index cycle and fresh media is indexed displacing a portion of the spent media. The media is then discharged to a waste container.



Dimensions

	A		E	3	C	Flow Rate	
	inches	mm	inches	mm	inches	mm	
RMF70	37.00	940	30.00	762	43.25	1099	71
RMF145	34.25	870	40.00	1016	52.75	1340	146
RMF210	34.25	870	52.00	1321	52.75	1340	212
RMF275	34.25	870	64.00	1626	52.75	1340	275
RMF300	41.75	1060	52.00	1321	65.75	1670	300
RMF350	34.25	870	73.00	1854	52.75	1340	350
RMF400	41.75	1060	83.00	1626	65.75	1670	400
RMF500	41.75	1060	73.00	1854	65.75	1670	500
RMF600	41.75	1060	83.00	2108	65.75	1670	600

Rolling Media Filtration RM

28 = 28 µm 50 = 50 µm $200 = 200 \,\mu m$

Notes Section:

Oil & Gas Products

Pit Purification Solutions

The Pit Purification Solution (PPS) is a portable unit providing staged filtration for cleaning drill water. All filters are made of coated carbon steel or non-corrosive stainless steel. The operating system is simple. The water to be cleaned passes through a series of filters providing progressively finer filtration. The final filtration is achieved by bag filtration, which can easily be changed to a micron rating of the user's choice.

The drill water first passes through a twist flow strainer (ATF), which is effective at removing coarse particles through a unique inlet arrangement and housing design that uses a centrifugal separator and an inline filter to separate solids from the fluid. Raw water enters tangentially to create a cyclonic flow. Centrifugal force moves the larger, heavier particles to the housing wall where they are accelerated downward by the decreasing diameter of the housing. While the larger, heavier particles are forced against the outer wall of the housing then down and out of the unit, the lighter, smaller particles can pass through the 200 micron slotted tube element in the center of the housing and move on to the backflushing filter (RF3).

The water then enters a backflushing filter (RF3) that captures solid particulate that are smaller in size. Slotted, conical tube element allows for efficient backwash. The "Wedge Wire" design of the elements provides for a wider opening on the effluent or downstream side of the element. This precludes particles becoming lodged and blinding the element. In the PPS, the RF3 is fitted with 50 micron slotted tube elements. A rotating arm allows a reverse jet of water through the elements to provide a back wash flow to the elements. Because of the way these first two filters operate, they have the added bonus of not requiring the elements to be replaced, and thus can remain functional indefinitely.

Next in line is a duplex bag filter housing, which features an extremely high dirt holding capacity. Filtered water from the RF3 passes to the duplex bag filters. Water passes through a progressively tighter series of bag elements: 25, 15 and 10 micron. Unlike the first two mechanical filters, the bag filters will need to be changed out periodically when they are full or there is indication of pressure drop at the bag housings. From the bag housings, the filtered water is delivered into a storage container for use at the driller's discretion.

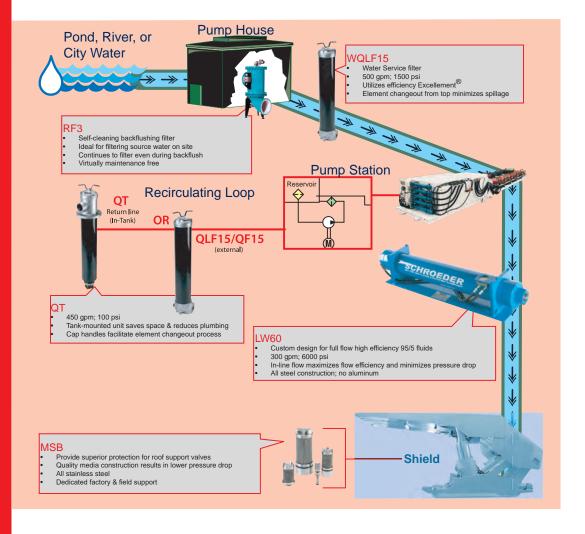
The PPS can also include an optional last filter, the Schroeder Qsize Filter. This filter, which utilizes element cartridges that are 39" in length, is available in several micron ratings, and can provide another level of fine filtration if necessary.

Oil & Gas Products PPS

- Provides a cost-effective means to filter wastewater from drilling operations
- On-site filtration helps to mitigate costly hauling charges
- Promotes the closed-loop water reuse concept (protects local resources and offers cost reduction to the drilling industry)

Features

Notes Section:		


Mining Products

Introduction

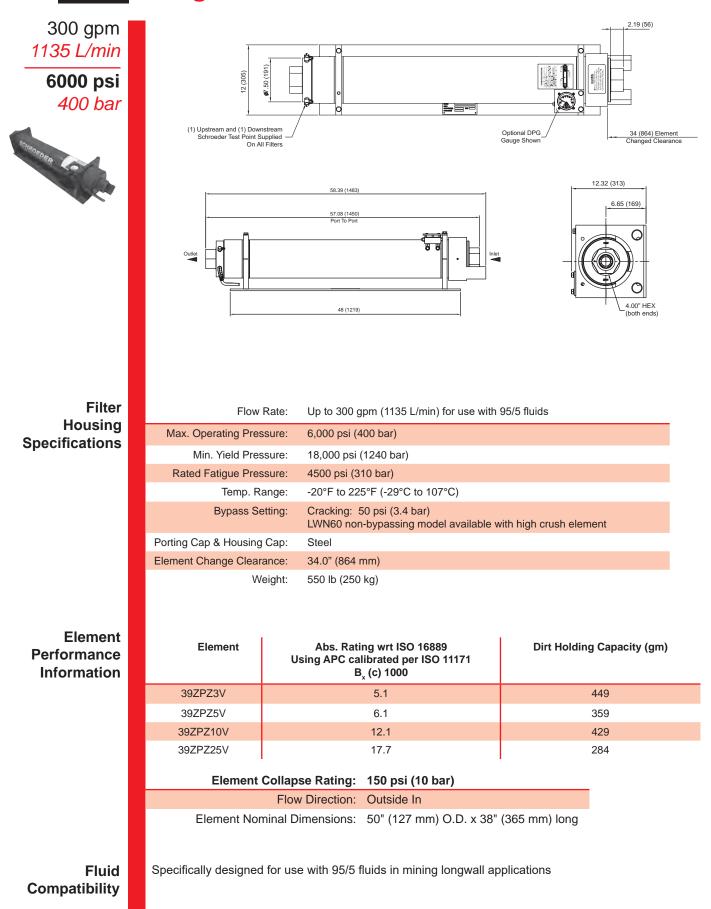
For 65 years, Schroeder Industries has been providing superior filtration solutions to the mining industry. With the addition of the Longwall High Pressure Filter (LW60) and numerous BestFit[™] elements for longwall shields and pump cars (MSB and SBF) to its product line, Schroeder is your turnkey filtration supplier for all mining applications.

Detailed product information on the LW60 and the BestFits for lining applications is provided on the following pages. For information on the RF3 backflushing filter, consult Schroeder's Process Filtration Catalog (L-2728). For information on the WQLF15, QT and QLF15/QF15, please consult Schroeder's Filtration Products Catalog (L-2520).

Turnkey Filtration

Mining Products

Schroeder Industries currently manufactures over 1,800 BestFit[™] performance replacement elements. In addition, Schroeder produces all of the technical data to support the sale of these products. The BestFit[™] family consists of standard elements, cartridge repair elements and the new SchroederSpun process filtration elements, as well as, mining specific elements. The following products are currently available for the mining industry:

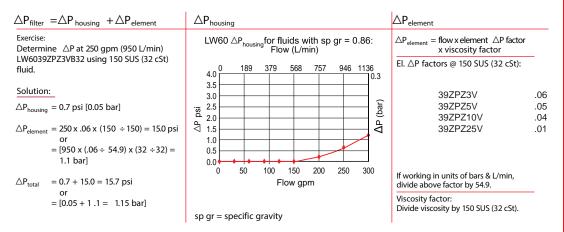

Longwall Pump Car BestFits™

Schroeder BestFit™ P/N	Micron Rating
MSB-1394-2050B	50
MSB-1394-20100B	100
MSB-1394-20200B	200
SBF-SALL-40Z150B	150
SBF-SALL-40Z10B	10
SBF-WS3L-150PSB	150
SBF-WS3L-M150B	150
SBF-PF3L-Z12B	12
SBF-WE3L-Z60B	60
SBF-SALL-100PSB	100
SBF-SALL-250PSB	250

Shield Element BestFits[™]

Schroeder BestFit™ P/N	Micron Rating
MSB-05841-340B	40
MSB-1298-280B	80
MSB-1330-3100B	100
MSB-1330-325B	25
MSB-1330-340B	40
MSB-1330-380B	80
MSB-3060-340B	40
MSB-3070-2100	100
MSB-3070-225	25
MSB-3070-240	40
MSB-3070-280	80
MSB-3077-525B	25
MSB-3077-540B	40
MSB-3176-225B	25
MSB-3185-425B	25
MSB-10266-5100B	100

LW60 Longwall Filter



Longwall Filter

- Horizontal alignment allows straight-through flow, maximizing efficiency and minimizing pressure drop
- Propriety synthetic media designed specifically for the mining industry, Excellement®-MD, provides level of filtration not achievable using alternative wire mesh elements because of their lack of absolute ratings
- Two-inch BSPP ports are easily adaptable to Super Stecko fittings commonly used underground
- Stainless steel bypass valve that ensures smooth integration with 95/5 fluid
- Non-bypassing version available with high crush (4500 psid) cleanable metal mesh (25 micron) element

Pressure	Element e Series Part No.		Element selec fluid and a 50	tions are pre psi (3.4 bar) l	edicated on the u bypass valve.	use of 150 SUS (3	2 cSt) petroleu	m based
	_	39ZPZ3V						
6000 psi	Z Media	39ZPZ5V						
	Media	39ZPZ10V						
		39ZPZ25V						
	Flaw	gpm	0 1	00	150	200	250	300
	Flow	(L/min)	0	400	600	800	1000	1150

Sizing of elements should be based on element flow information provided in the Element Selection chart above. Please note that 95/5 fluid has a lower viscosity than 150 SUS and therefore pressure drops for 95/5 will actually be lower.

Filter Series	Element Part Number	Porting	Bypass Setting	Dirt Alarm
LW60	39ZPZ3V 39ZPZ5V 39ZPZ10V 39ZPZ25V	B32=ISO 228 G-2" (2-11 BSPP)	(Omit)= 50 psi Cracking 30 = 30 psi cracking	DPG= Differential Pressure Gauge
LWN60	39ZPMX25V	B32=ISO 228 G-2" (2-11 BSPP)	(Omit)= Blocked	DPG= Differential Pressure Gauge

Features

Excellement MD

Mining Specific Elements

LW60

Element Selection Based on Flow Rate

Pressure Drop Information Based on Flow Rate and Viscosity

Filter Model Number Selection

Excellement MD[®]

Mining Specific Elements

The multiple layer construction shown below has evolved from comprehensive laboratory testing to provide extended element life and system protection. Each successive layer performs a distinct and necessary function. The outermost layer is designed to maintain element integrity. Beyond this layer, is a spun-bonded scrim, offering coarse filtration and protection for the more delicate filtering layers within. Multiple sheets of fine filtering media follow, providing intricate passageways for the entrapment of dirt particles. When combined, the layers of the Excellement©-MD filter media provide the ideal formulation for filtration performance used in severe mine duty applications. Through the addition of new materials, the strength of our media has been improved when applied in water based fluids. Soak testing in 95/5 fluids proves that Excellement-MD media scrim and wire mesh maintain their integrity. This new media will provide better protection for the valves on the longwall shields and extend the pilot element's service life in any longwall application.

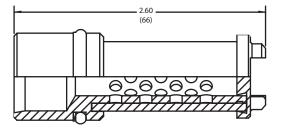
Stainless steel wire fabric provides support and rigidity, eliminating the poy tential for rust and abrasion.

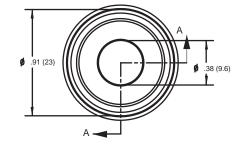
Spun-bonded scrim protects intricate filtration media in high water-based fluids.

Z-MediaTM provides maximum dirt-holding capacity with the minimum pressure drop.

New high strength Excellement®-MD media layer

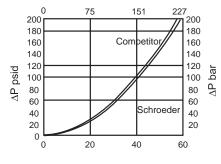
Spun-bonded scrim protects intricate filtration media in high water-based fluids.


Stainless steel wire fabric provides support and rigidity, eliminating the potential for rust and abrasion.

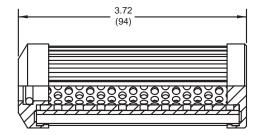

Element
Performance
Information

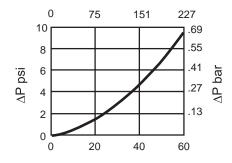
Element	Abs. Rating wrt ISO 16889 Using APC calibrated per ISO 11171 B _x (c) 1000		Dirt Holding Capacity (gm)
39ZPZ3V	5.1		449
39ZPZ5V	6.1		359
39ZPZ10V	12.1		429
39ZPZ25V	17.7		284
	Element Collapse Rating:	150 psid (10 bar)	
	Flow Direction:	Outside In	
Element Nominal Dimensions: 5.0" (127 mm) O.D. x 38" (965 mm) long			
*Elements als	o used in LW60		

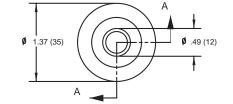
Schroeder Part Number:


MSB-1298-280B (80 µ)

Max Pressure:


Pressure Drop


*Contact factory for additional filter ratings


Schroeder Part Number:

MSB-05841-340B (40 μ)

Pressure Drop

Max Pressure:	6,000 psi (400 bar)
Max Differential Pressure:	6,000 psid (400 bar)
Crush Rating:	>6,000 psid
End caps:	Stainless Steel
Support Tubes:	Stainless Steel
Metal Mesh:	Stainless Steel
O-Ring:	Buna N
Flow Rating:	See Graph
Filter Rating:	40 micron

SCHROEDER INDUSTRIES | PROCESS FILTRATION

*Contact factory for additional filter ratings

Max Differential Pressure: 6,000 psid (400 bar) Crush Rating: > 6,000 psid End Caps: **Stainless Steel** Support Tubes: Stainless Steel Metal Mesh: Stainless Steel Wrap O-Ring: Buna N Back-up Ring: Nylon Flow Rating: See Graph Filter Rating: 80 micron

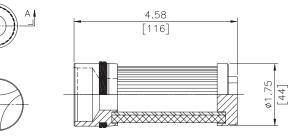
6,000 psi (400 bar)

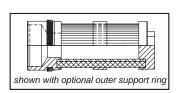
Specifications

117

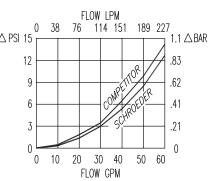
LW60

Mining Specific Elements


Excellement MD

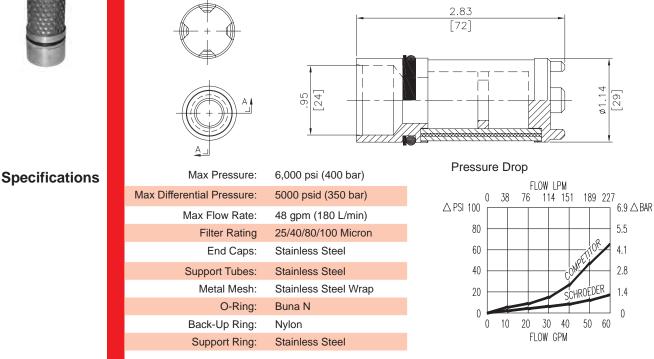


Specifications

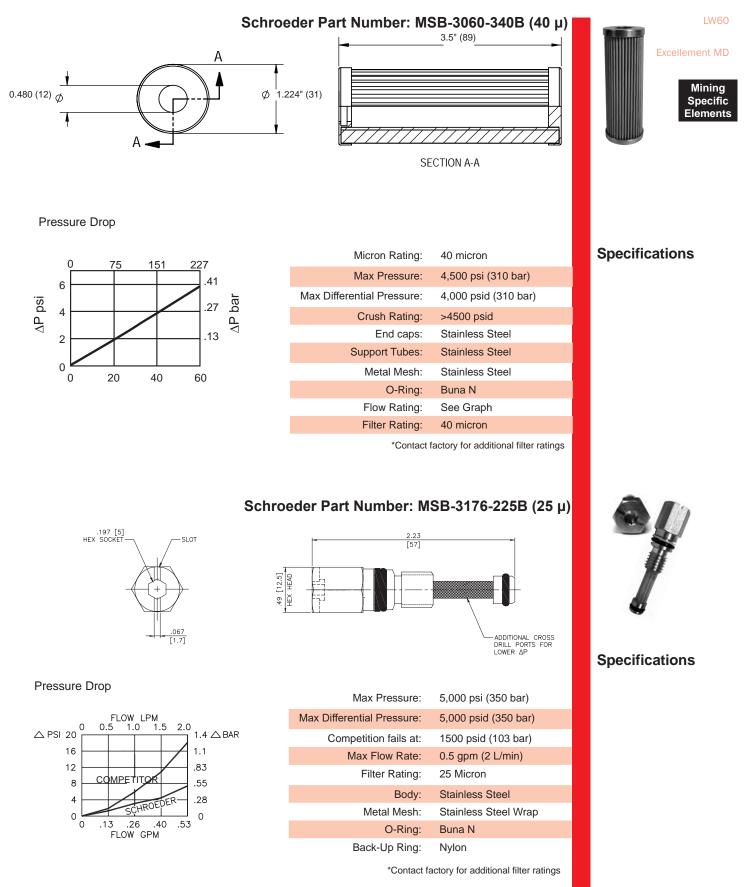

Schroeder Part Numbers: MSB-3077-525B (25µ) & MSB-3077-540B (40 µ)

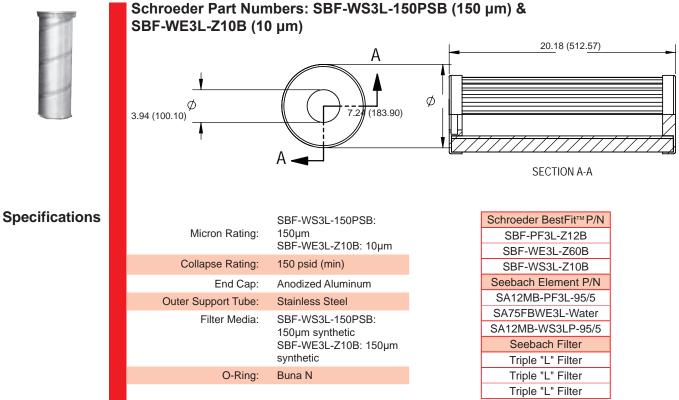
Specifications

Max Pressure:	5,000 psi (350 bar)	
Max Flow Rate:	40 gpm (150 L/min)	Δ
Filter Rating:	25/40 Micron	
End caps:	Stainless Steel	
Support Tubes:	Stainless Steel	
Metal Mesh:	Stainless Steel Pleated	
O-Ring:	Buna N	
Back-up Ring:	Nylon	



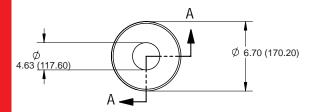
Pressure Drop

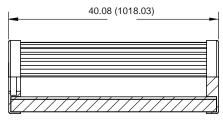

*Contact factory for additional filter ratings



Schroeder Part Number: MSB-1330-325B (25 µ), MSB-1330-340B (40 µ), MSB-1330-380B (80 µ) & MSB-1330-100B (100 µ).

*Contact factory for additional filter ratings

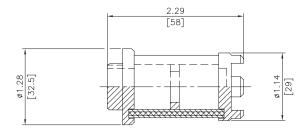


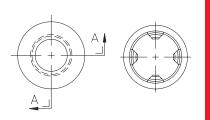


*Contact factory for additional filter ratings

Schroeder Part Number: SBF - SALL - 40Z150B & SBF- SALL - 40Z10B

SECTION A-A


Specifications


Micron Rating:	SBF-SALL-40Z150B: 150µm SBF-SALL-40Z10B: 10µm
Collapse Rating:	Not Rated
End Caps:	Anodized Aluminum
Support Tube:	None
Filter Media:	SBF-SALL-40Z150B: 150µm synthetic SBF-SALL-40Z10B: 10µm synthetic
O-Ring:	Buna N

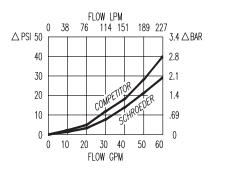
*Contact factory for additional filter ratings

Schroeder BestFit [™] P/N
SBF-SALL-40Z150B
SBF-SALL-40Z10B
Seebach Element P/N
SALL40FB-150-Water
SALL40G010-95/5
Seebach Filter
2UC3230-000
2UC3230-000

Schroeder Part Numbers: MSB-3070-225 (25 µ), MSB-3070-240 (40 µ), MSB-3070-280 (80 µ) & MSB-3070-2100 (100 µ)

Mining Specific Elements

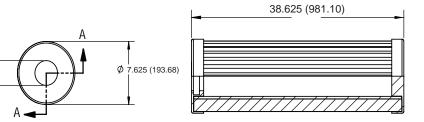
LW60


Specifications

Specifications

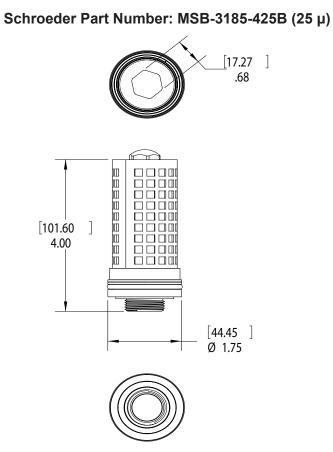
Pressure Drop

3.70 (93.98) Ø


ł

Max Pressure:	5,000 psi (350 bar)
Max Differential Pressure:	5,000 psid (350 bar)
Max Flow Rate:	52 gpm (200/L/min)
Filter Rating:	25/40/80/100 Micron
End Caps:	Stainless Steel
Support Tubes:	Stainless Steel
Metal Mesh:	Stainless Steel Wrap
Support Ring:	Stainless Steel

*Contact factory for additional filter ratings


Schroeder Part Numbers:SBF-PF3L-Z12B (12 µm) & SBF-WE3L-Z60B (60 µm)

SECTION A-A

Micron Rating:	SBF-PF3L-Z12B: 12µm SBF-WE3L-Z60B: 60µm	
Collapse Rating:	150 psid (min)	
End Cap:	Anodized Aluminum	
Support Tube:	SBF-PF3L-Z12B: Cold Roll Steel SBF-WE3L-Z60B: Stainless Steel	
Filter Media:	SBF-PF3L-Z12B: 12µm synthetic SBF-WE3L-Z60B: 150µm synthetic	
O-Ring:	Buna N	
Z *Contact f	*Contact factory for additional filter ratings	

Schroeder BestFit [™] P/N	
SBF-PF3L-Z12B	
SBF-WE3L-Z60B	
Seebach Element P/N	
SA12MB-PF3L-95/5	
SA75FBWE3L-Water	
Seebach Filter	
Triple "L" Filter	
Triple "L" Filter	

Specifications

Max pressure:	5000 psi (350 bar)
Max Differential Pressure:	5000 psid (350 bar)
Max flow Rate:	105 gpm (400 l/min.)
Filter Rating:	25 micron
Material:	Body - Stainless Steel Metal Mesh - Stainless Steel Wrap O-Ring - Buna N Back-Up Ring - Nylon

*Contact factory for additional filter ratings

Glossary

Materials of Construction for Housings, Elements and Seals

Carbon steel without coating - General purpose for non-corrosive and non-oxidizing liquids.

Carbon steel with protective internal coating – This internal coating protects against UV, abrasion and corrosion, and should be specified for water applications, such as river water, service water, cooling water, clear run water from sewage treatment facilities, etc.

304 Series stainless steel – Widely available, good general corrosion resistance, good cryogenic toughness. Excellent formability and weldability.

316 Series (L and Ti) stainless steel – Widely available, good general corrosion resistance, good cryogenic toughness. Excellent formability and weldability.

Polyamide (filter element end caps) – General-purpose polymer (amide) for use in applications such as hydraulics and pneumatics. Resistant to oils, hydraulic fluids, water fuels, gases, petroleum oils, cold water, silicone greases and oils Di-ester base lubricants (MIL-L-7808) ethylene glycol base fluids (Hydrolubes) not suited for use in brake fluids. Good abrasion resistance. Good resistance to compression set. High tensile strength. Characteristics: Stable plastic. Dull, matte finish.

PTFE / Teflon® (a registered trademark of DuPont Dow Elastomers) – General-purpose thermoplastic (Polytetrafluoroethelyene) for use as a low friction, insulating product that is inert to most chemical substances.

Buna N / NBR (nitrile) – General purpose elastomer for use as seal energizer or low-pressure applications, such as hydraulics and pneumatics. Resistant to oils, hydraulic fluids, water fuels, gases, petroleum oils, cold water, silicone greases and oils. Di-ester base lubricants (MIL-L-7808), ethylene glycol base fluids (Hydrolubes) not suited for use in brake fluids. Good abrasion resistance. Good resistance to compression set. High tensile strength. Characteristics: Rubber-like elastomer. Dull, matte finish. Some NBR o-rings have a very shiny surface.

Silicone – General-purpose elastomer for use as seal material. Resists water and many chemicals such as some acids, oxidizing chemicals, ammonia and isopropyl alcohol. Note: concentrated acids, alkalines and solvents should not be used with silicone rubber. Characteristics: Soft rubber-like elastomer. High tear and tensile strength, good elongation, excellent flexibility.

Viton[®] (a registered trademark of DuPont Dow Elastomers) – Widely available elastomer for use as seal energizer or low-pressure applications, such as process fluids, hydraulics and pneumatics. Highly resistant to many aggressive fluids, such as fuels and chemicals. Characteristics: Rubber-like elastomer. ISO 9000 registration.

EPDM (Ethylene Propylene Diene) – Versatile and widely used synthetic rubber recognized for its resistance to heat, oxidation, weather, and electricity. Compatible with water, acids, alkalies, phosphate esters and many ketones and alcohols.

Cleaning Reusable Filter Elements – The cleaning methods for the reusable elements depend upon the type of service and the filter element design. The individual cleaning methods described here can be combined to achieve better results. It is not advisable to attempt most of these cleaning methods without the proper equipment and training. There are competent organizations best suited for this type of work. Upon request, we will provide a cleanliness certificate, including the results of a bubble-point test as well as the clean and fully laden element weights.

Pyrolysis – This method is based upon the removal of organic materials imbedded within the element. Organic material is vaporized at high temperature in an oxygen-depleted atmosphere. Exact control of the temperature and oxygen content is required to avoid damage to the element of the possibility of flame generation.

Vacuum Pyrolysis – This method is based upon the removal of plastic materials imbedded within the element using a two-step process. Organic material is vaporized at high temperature in an oxygen-depleted atmosphere within a vacuum chamber. In this process the material to be removed is melted into liquid and evacuated via vacuum in the first step, then further heating vaporizes the remaining material in the second step. Exact control of the vacuum, temperature and oxygen content is required to avoid damage to the element of the possibility of flame generation.

Boil Off – This method is based upon a process similar to a commercial dishwasher. Constant flowing of a flushing liquid (typically a solvent) at high temperature ensures removal of particles.

High Pressure Wash – This method is used mainly for the removal of coarse particles from the filter elements. It can be a manual or automatic process depending on the equipment available. A standard high pressure using water or water-based solvents can be used taking care not to damage the element. The wash direction must be consistent with the flow direction of the element.

Ultrasonic Cleaning – This method utilizes an ultrasonic bath, which easily loosens the particles imbedded in the filter element. Using water with a detergent additive, a 20 to 40 Hz frequency is recommended. Solvents other than standard detergents can be used also.

The information provided in this section is for reference only, and should be used as a guide when selecting the proper filters, elements, materials of construction and determining fluid compatibility. Schroeder Industries presents the information in this medium in good faith, and it is and believed to be accurate and correct. No representations or warranties as to the completeness or accuracy of the information are made by Schroeder. The persons receiving or using this information must make their own determinations as to intended use, purpose and application. Schroeder will assume no responsibility for damages or be held liable for any misuse or misapplication based upon the data within this medium. For your specific application. contact Schroeder Industries at www. schroederpure. com by phone at 724 318 1100 or fax at 724.318.1200.

Process Filtration Worksheet

Company	
Contact Name	
Department	
Contact Title	
Street	
City, State, Zip	
Phone	Fax
Date	E-mail
Providing the following information will allow us to determin application.	ne the most appropriate process filter for your particular
Description of Application: (add schematics as needed)	
Type of Fluid	Flow Rate gpm
Operating Pressure psi	Design Pressure ps
Operating Temperature* °F	Design Temperature ° F
Filtration Rating µm	ViscositySUS
Dirt Content mg/l	Voltage***
Desired Filter (please check) Single Filter housing Duplex	Filter Housing Self-Cleaning Filter No Preference
Element Type** (please check) Disposable Recycla	ble No Preference
Dirt Alarm** (please check) Optical Optical	Electrical No Preference
Material Requirements (if any)	
Characterization of Contamination	
Pressurized Air Service?*** No	Yes If yes, please indicate pressure psi
Connection Inlet / Outlet	
Required Third Party / Certificate?	
Quantity	
Comments (Please attach any applicable drawings)	
*Please contact factory if the maximum temperature exceeds the **Not for the Self-Cleaning Filter.	fluid's boiling point.

***Only needed for the use of a Self-Cleaning Filter.

Hydraulic Lube Filtration Accessories Filter Systems

Fuel Filtration

Process Filtration

L-2728 | 2021

PROCESS FILTRATION

INDUSTRIES

Advanced Fluid Conditioning Solutions®

DISTRIBUTED BY:

*To access more information about Schroeder, scan the code with your app-enabled smartphone.

© Copyright 2021 Schroeder Industries. All rights reserved