HYDRAULIC LUBE FILTRATION

Product Catalog

About Schroeder Industries

Schroeder Industries is a family company of 76 years which manufactures, designs, and markets a complete range of Advanced Fluid Conditioning Solutions®. Headquartered in Leetsdale, PA, we are in the heart of manufacturing country.

Schroeder Brothers Corporation was founded after Bill Schroeder returned from WW2. Bill wrote a letter to his brother Jack, a young engineer, describing an opportunity to distribute an important new product to the mining industry. In the letter, Bill explained that he believed they could build a business around this technology.

Schroeder Brothers Corporation grew rapidly, adding additional mining products and eventually becoming the largest mining equipment distributor in the Appalachia's. Over time, Schroeder began to manufacture hydraulic systems and components for the mines. The systems came first, and with the systems came issues related to contamination.

To this day, underground mining is still one of the most difficult hydraulic system operating environments. With his system experience, Bill realized that there was a critical need for high efficiency filtration. Together with his brothers Jack & Reed, Bill pioneered the development of many hydraulic and lubrication filtration concepts, products, and standards that are still the benchmarks of performance today. Time continued to march on, and Schroeder's business continued to evolve further into a manufacturing company.

Today, Schroeder Industries serves almost every market where high efficiency fluid filtration is required. Our Advanced Fluid Conditioning Solutions® are forged through the real-world experience gained in the world's toughest operating environments.

Mission Statement

Our success is a product of customer-driven innovation and technically advanced fluid conditioning products and services, in which our people deliver value to our stakeholders, communities and environment.

Quality Policy

Continuous improvement in our business to ensure a quality product. shipped on time, without compromise.

Vision

To be the global leader of engineered, fluid conditioning products & services.

Core Values (F.I.L.T.E.R.S)

- Fueled: By the success of our customer.
- Ingenuity: Engineered solutions for a complex environment.
- Lead by example: Better every day through continuous improvement.
- Together: We excel through clear communication & teamwork.
- **Empowering:** Employees to provide exceptional quality & service.
- **Responsiveness:** With determination, we make it happen.
- Safety: We pride ourselves on a safe, fun & family-oriented work environment.

Limitations of Liability

The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder's terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise.

It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.

Contents at a Glance

Detailed Contents: Hydraulic & Lube Filters	4
Filter Housing: Flow vs. Operating Pressure	6
Note to the Reader	7
Corporate Overview	8
Capabilities	9
Products	10
Section 1: Principles of Filtration	11
Contamination Control Fundamentals	12
Element Technical Data Fundamentals	16
Element Media Selection Considerations	20
7 Steps to Selecting a Filter	23
Filter Selection Considerations	24
Ordering Information	27
Section 2: Element Technology	29
Excellement® Z-Media® Elements (Synthetic)	30
Element Case Weight	33
GeoSeal® Selection Guide	34
Private Labeled Elements	35
DirtCatcher [®] Elements	36
Anti-Stat, Anti-Stat Premium (Synthetic)	37
BestFit® High Performance Replacement Elements	39
CoreCentric [®] Coreless Element	40
Melt-Blown and Spun Bonded Filter Elements	40
E-Drive Media	41
E Media Elements (Cellulose)	42
M Media Elements (Reusable Metal)	43
F-Pack Media Elements	43
W Media Elements (Water Removal)	44
Aqua-Excellement™ High Efficiency Media (Water Removal)	44
Section 3: High Pressure Filters (1500-6500 psi)	47
Selection Guide	48
Top-Ported High Pressure Filters	49
Base-Ported High Pressure Filters	101
Hydrostatic (Bidirectional) Flow Filters	125
Manifold Mount Filter Kit	155
Cartridge Elements for use in Manifold Applications	159
Section 4: Medium Pressure Filters (up to 1500 psi)	161
Selection Guide	162
Top-Ported MediumPressure Filters	163
Base-Ported Medium Pressure Filters	181

217
218
219
247
313
321
325
327
339
340
341
349
351
352
353
353
360
361

Detailed Contents: Hydraulic & Lube Filters

		Pressure psi (bar)	Flow gpm (L/min)	Page
Top-Ported	High Pressure Filters			
	<u>NF30</u>	3000 (210)	20 (75)	49
	NFS30	3000 (210)	20 (75)	53
	<u>YF30</u>	3000 (210)	25 (100)	57
	<u>CFX30</u>	3000 (210)	30 (115)	61
	<u>PLD</u>	3000 (210)	100 (380)	65
	DF40	4000 (275)	30 (115)	69
	<u>CF40</u>	4000 (275)	45 (170)	69
	PF40	4000 (275)	50 (190)	73
	<u>RFS50</u>	5000 (345)	30 (115)	77
	<u>RF60</u>	6000 (415)	30 (115)	81
	<u>CF60</u>	6000 (415)	50 (190)	85
	<u>CTF60</u>	6000 (415)	75 (284)	89
	<u>VF60</u>	6000 (415)	70 (265)	93
	<u>LW60</u>	6000 (415)	300 (1135)	97
Base-Ported	High Pressure Filters			
	KF30 QUALITY	3000 (210)	100/150 (380/570)	101
	KF50 QUALITY	5000 (345)	100/150 (380/570)	101
	TF50	5000 (345)	40 (150)	105
	KC50 QUALITY	5000 (345)	100/150 (380/570)	109
	MKF50 QUALITY	5000 (345)	200 (760)	113
	MKC50	5000 (345)	200 (760)	113
	KC65 QUALITY	6500 (450)	100 (380)	117
	<u>MKC65</u>	6000 (413)	300 (1136)	121
Hydrostatic	(Bidirectional) Flow High Pres			
	<u>HS60</u>	6000 (415)	120 (450)	125
	MHS60	6000 (415)	120 (450)	125
	KFH50 (Base-Ported)	5000 (345)	70 (265)	129
Base-Ported				-
	<u>LC60</u>	6000 (415)	8 (30)	133
	LC35	3500 (241)	15 (57)	135
	<u>LI 50</u>	5000 (345)	35 (130)	137
	LC50	5000 (345)	9 (35)	141
Servo Prote	ction (Sandwich) Filters DO7,	DO3, Moog, Parker & V	ickers	
	NOF30-05	3000 (210)	12 (45)	143
	<u>NOF50-760</u>	5000 (345)	15 (57)	147
	FOF60-03	6000 (415)	12 (45)	151
Manifold Mo	unt Filter Kits (Bowls & Install	ation Drawings)		
	NMF30	3000 (210)	20 (75)	155
	RMF60	6000 (415)	30 (115)	157
Cartridge El	ements for use in Manifold Ap 14-CRZX10	3000 (210)	6 (23)	159
	20-CRZX10	3000 (210)	6 (23) 12 (45)	160
	20-OKZAIU	3000 (210)	12 (43)	100

	Top-Ported Medium Pressure Return Line F	ilters		
	<u>GH</u> QUALITY	725 (50)	35 (130)	163
e	RLT	1400 (97)	70 (265)	169
Ins	KF5 QUALITY	500 (35)	100 (380)	173
Pressure) psi)	SRLT	1400 (100)	25 (100)	177
	Base-Ported Medium Pressure Filters			
		900 (60)	100 (380)	181
12 1		900 (60)	100 (380)	185
Med o to	<u>3K9</u> QUALITY	900 (60)	100 (380)	185
4: M (up	<u>QF5</u>	500 (35)	300 (1135)	189
- 00	<u>QF5i</u>	500 (35)	120 (454)	193
TION	<u>2QF5</u>	500 (35)	300 (1135)	197
SECTION Filter	<u>3QF5</u>	500 (35)	300 (1135)	197
)E	QFD5	500 (35)	350 (1325)	201
0,	<u>QF15</u>	1500 (100)	450 (1700)	205
	<u>QLF15</u>	1500 (100)	500 (1900)	209
	SSQLF15	1500 (100)	500 (1900)	213

Detailed Contents (cont.)

			Pressure psi (bar)	Flow gpm (L/min)	Page
	Top-Ported Low Pressure F	ilters			
		IRF	100 (7)	100 (380)	219
		TF1	300 (20)	30 (120)	223
		KF3 QUALITY	300 (20)	100 (380)	227
		KL3 QUALITY	300 (20)	120 (455)	231
		<u>LF1–2"</u>	300 (20)	120 (455)	235
		MLF1 QUALITY	300 (20)	200 (760)	239
		RLD	350 (24)	100 (380)	243
(internet internet in	Tank-Mounted (In-Tank/Tan	k Top) Low Pressure Fi	Iters		
ă		GRTB QUALITY	100 (7)	100 (380)	247
200		<u>MTA</u>	100 (7)	15 (55)	251
2		<u>MTB</u>	100 (7)	35 (135)	255
(up to 500 psi)			100 (7)	40 (150)	259
		AFT QUALITY	100 (7)	40 (151)	263
Low Pressure Filters		AFTE QUALITY	100 (7)	40 (151)	267
Ē		GPT QUALITY	150 (10.3)	175 (662)	271
le		KFT QUALITY	100 (7)	100 (380)	273
lss			100 (7)	100 (380)	277
ĕ		RTI	100 (7)	120 (455)	281
N N			100 (7)	150 (570)	285
Ē		ART	145 (10)	225 (850)	289
		BRT QUALITY	145 (10)	160 (600)	293
Z		TRT QUALITY	145 (10)	634 (2400)	299
E		BFT	100 (7)	300 (1135)	305
SECTION 5:		QT	100 (7)	450 (1700)	309
S	Special Feature Tank-Moun	ted Low Pressure Filter	S		
	Internal	KTK QUALITY	100 (7)	100 (380)	313
	Internal	<u>LTK</u>	100 (7)	150 (570)	317
	Severe Duty Tank-Mounted				
		<u>MRT</u>	900 (62)	150 (570)	321
	Spin-On Low Pressure Filte				
		PAF1	100 (7)	20 (75)	327
		MAF1	100 (7)	50 (190)	331
		MF2	150 (10)	60 (230)	335

	Tank-Mounted Suction Filter			
	<u>ST</u>	Suction	20 (75)	341
6: ers	Top-Ported Suction Filter			
DN 6: Filters	<u>SKF3</u>	300 (20)	25 (95)	345
\mathbf{U}	In-Line Magnetic Suction Separators			
SECTI Suction	<u>TF-SKB</u>	Suction	12.5 (47)	349
S us	KF3-SKB QUALITY	Suction	35 (130)	350
	Tank-Mounted Magnetic Suction Separator			
	BFT-SKB	Suction	75 (285)	351

Filter Housings: Flow vs. Operating Pressure

Note to the Reader

The aim of our catalog is to provide the information and guidance you'll need to make informed and appropriate choices for your filtration needs.

Illustrated and easy to understand, Section 1 is now widely used as a training tool by many companies, including original equipment manufacturers for whom Schroeder provides value-added products. The revised Section 1 continues to serve as an effective "primer" on contamination control fundamentals. In this section, we also provide filtration information and guidance for selecting the optimal filter and element media for your application.

Section 1 also explains recent changes in industry standards regarding how fluid cleanliness is defined and measured. Recent technological advancements in the measurement of microscopic particles, coupled with the establishment of a new standard test dust for calibration purposes, necessitated these changes. Although the new standards may seem confusing at first, they enable more accurate sizing

of dirt particles and reduce variability in output among different automatic particle counters. The end result is more reliable data for the user.

In Section 2, you'll find extensive technical data on Schroeder's Excellement' Z-Media', which combines high efficiency, low pressure drop and exceptional dirt holding capacity. Schroeder's design engineers have also given special attention to developing more environmentally friendly products, such as Corecentric'

elements, which contain no metal and can be crushed, shredded or burned.

Sections 3 through 6 describe the types of contamination control products and accessories we offer. Whether your hydraulic system requires pressure filters, tank-mounted filters, return-line filters, or some combination of these, this updated catalog will help you find the right Schroeder filter to do the job. Of course, every filter comes with a Schroeder original element, available in a wide variety of media and micron ratings.

Dirt Alarm^{*}, BestFit^{*}, Excellement^{*}, DirtCatcher^{*} and CoreCentric^{*} are registered trademarks of Schroeder Industries.

Schroeder's web site, www.schroederindustries.com, is filled with helpful resources.

Replacing filter elements is simpler than ever before with our Online Cross-Reference Guide to BestFit^{*} replacement elements. With this user-friendly guide you can match 41,000 filter elements from 150 other manufacturers with appropriate BestFit^{*} replacements. Click the BestFit^{*} link on our home page or got to the direct link at www.schroederindustries.info.

Visit Us Online...

Corporate Overview

Schroeder Industries, an ISO 9001:2015 certified company, focuses on developing filtration and fluid service products for our customers in the fluid power industry and is proud of our proven track record of providing quality products over the last 75 years. The designs you see in this catalog are the result of thousands of hours of field testing and laboratory research...and decades of experience.

Schroeder was one of the first companies to demonstrate the need for, and benefits of, hydraulic filtration. We pioneered the development of micronic filtration, helping to set performance standards in industrial fluid power systems. As a result, Schroeder is now a leader in filtration and fluid conditioning—and the proof of our expertise lies in our broad mix of unsurpassed products. Our mission statement reflects our continuing commitment to excellence:

Partnerships

Innovating products, solutions, processes and services to improve performance and efficiency in industry.

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customization process to fill specific customer needs
- Increasing manufacturing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for our customers

Our goal is to be your filtration partner. Our expertise in filtration technology, our superior filter and element manufacturing capabilities, and our dedication to customer service and product support are the reasons we're considered experts in Advanced Fluid Conditioning Solutions^{*}.

We are committed to providing the best available filter products to meet necessary cleanliness levels at a competitive price. As a cost-effective quality producer, we can work with your purchasing department to supply contamination control technology or develop long-range pricing programs that can improve your company's bottom line.

Capabilities

Schroeder Industries has in place a strategically located international distribution network, supported by our professional and experienced sales and marketing team. Distributor personnel are trained in the important aspects of filter application by Schroeder in training sessions held at our factory and around the globe. The effectiveness of our product and service support is multiplied by utilizing Schroeder's extensive distributor network. All Schroeder Industries distributors meet very strict criteria to enhance our ability to serve the needs of our valued customers.

Schroeder's distributor network includes over 100 distributor locations throughout Europe, the United Kingdom, South Africa, Australia, Asia, North America and South America, so that customers worldwide can rely on Schroeder's exceptional support.

Schroeder Industries' corporate headquarters are located in Leetsdale, PA (USA) with an additional manufacturing facility in Cumberland, MD (USA). Filter housings and diagnostic and specialty products are manufactured at our Pittsburgh plant, while filter elements are manufactured in our Cumberland plant. Both facilities have the skilled workforce and the capacity to meet our customers' needs. Schroeder's research and development center as well as our contamination control laboratory are located at our corporate headquarters.

Schroeder's products, technical expertise, commitment to research and development, and ongoing improvements in manufacturing enable us to provide products and services that improve performance and efficiency in many major industries, including:

AGRICULTURE

CONSTRUCTION

MINING TECHNOLOGY

PULP & PAPER

INDUSTRIAL

MOBILE

VEHICLES

RAILROAD

MACHINE TOOL

OFFSHORE

STEEL MAKING

CHEMICAL PROCESSING

POWER GENERATION

WASTE WATER TREATMENT

Manufacturing and Testing

Markets Served

Products

Engineering Laboratory

Schroeder Industries' products are continually tested using the latest ISO and NFPA test procedures in our engineering lab. Our dynamic test stands are in constant operation, subjecting our filter housings to cyclic pressure to verify their rated fatigue and burst pressures per NFPA Standard T2.6.1. Statistically sampled elements are tested to ensure fabrication integrity in the manufacturing process. They are also tested for efficiency and dirt-holding capacity in a multi-pass test stand, equipped with in-line particle counting capabilities, which are calibrated to ISO standards.

Extensive testing is conducted to ensure compatibility with various hydraulic fluids, including the newest fire-resistant fluids, per ISO 2943 Standard. Flow fatigue tests are run to evaluate the structural strength of elements, per ISO 3724 Standard.

Design and Testing Standards of Schroeder Filter Housings		Design and Testing Standards of Schroeder High Efficiency Elements	
Description	Standard	Description	Standard
Burst Pressure Test	NFPA/T-2.6.1	Element Collapse (Burst)	ISO 2941
Fatigue Testing	NFPA/T-2.6.1	Fabrication Integrity	ISO 2942
Pressure/Life Rating	NFPA/T-3.10.17	Material Compatibility	ISO 2943
of a Spin-On Filter	111771 5.10.17	End Load	ISO 3723
Pressure Drop vs. Flow	ISO 3968	Element Flow Fatigue	ISO 3724
		Pressure Drop vs. Flow	ISO 3968
		Multi-Pass	ISO 16889

An Open Invitation

We invite you to present us with any specific filtration challenge you may experience. Schroeder will design and make filters to meet your specific requirements. To find out more, and/or obtain a quote, call us to speak with a sales representative or technical specialist. They can help determine the optimal filtration strategy for a given system. While the quantity of any product manufactured to fit a customer's needs will determine the economic feasibility of a particular project, in many cases, we can offer modified products in relatively small quantities at competitive prices and short lead times.

Over the years, Schroeder design engineers have encountered virtually every type of hydraulic system. We are proud of our continuing success in providing "value-added products" for our customers, that is, making or modifying our products to meet their specific needs. When customers order products from Schroeder, they are assured of a reliable source of supply, consistent and prompt service and direct support. Pre and post-

consistent and prompt service, and direct support. Pre and posttechnical service is provided to ensure customer satisfaction.

So if you're faced with a filtration dilemma, call us. Schroeder Industries: Advanced Fluid Conditioning Solutions^{*}.

Advanced Fluid Conditioning Solutions®

Contamination Control Fundamentals

Why Filter?

Over 70% of all hydraulic system failures are caused by contaminants in the fluid. Even when no immediate failures occur, high contamination levels can sharply decrease operating efficiency.

Contamination is defined as any substance which is foreign to a fluid system and damaging to its performance. Contamination can exist as a gas, liquid or solid. Solid contamination, generally referred to as particulate contamination, comes in all sizes and shapes and is normally abrasive.

High contaminant levels accelerate component wear and decrease service life. Worn components, in turn, contribute to inefficient system operation, seizure of parts, higher fluid temperatures, leakage, and loss of control. All of these phenomena are the result of direct mechanical action between the contaminants and the system components. Contamination can also act as a catalyst to accelerate oxidation of the fluid and spur the chemical breakdown of its constituents.

Filtering a system's fluid can remove many of these contaminants and extend the life of system components.

How a System Gets Contaminated

Contaminants come from two basic sources: they either enter the system from outside (ingestion) or are generated from within (ingression). New systems often have contaminants left behind from manufacturing and assembly operations. Unless they are filtered as they enter the circuit, both the original fluid and make-up fluid are likely to contain more contaminants than the system can tolerate. Most systems ingest contaminants through such components as inefficient air breathers and worn cylinder rod seals during normal operation. Airborne contaminants are likely to gain admittance during routine servicing or maintenance. Also, friction and heat can produce internally generated contamination.

Figure 1. Typical Examples of Wear Due to Contamination

Wear

Vanes for Vane Pump

Relief Valve Piston

Vane Pump Cam Ring

Size of Solid Contaminants

The size of solid particle contaminants is commonly measured in micrometers, μ m, (usually referred to as microns, μ). A micron is a unit of length equal to one millionth of a meter or about .00004 inch. Particles that are less than 40 μ cannot be detected by the human eye.

Substance	Microns	Inches
Grain of table salt	100 µ	.0039"
Human hair	70 µ	.0027"
Talcum powder	10 µ	.00039"
Bacteria (average)	2 μ	.000078"

Figure 2 shows the sizes of some common substances. To gain some perspective, consider the diameters of the following substances:

A micron rating identifies the size of particles that a particular filtration media will remove. For instance, Schroeder Z10 filter media is rated at β 10 \geq 1000, meaning that it can remove particles of 10 μ and greater at 99.9% efficiency.

Figure 2. Sizes of Known Particles in Inches and Microns

In hydraulic fluid power systems, power is transmitted and contained through a liquid under pressure within an enclosed circuit. These fluids all contain a certain amount of solid particle contaminants. The amount of particulate contaminants present in a hydraulic or lubrication system's fluid is commonly referred to as its cleanliness level.

ISO 4406:1999 provides guidelines for defining the level of contamination present in a fluid sample in terms of an ISO rating. It uses three scale numbers, representing the number of particles greater than or equal to 4 μ (c), 6 μ (c), and 14 μ (c) in size per 1 mL of sample fluid.

Figure 3 shows the graph used to plot particle counts per ISO 4406:1999.

2,500,000 28 1,300,000 27 640,000 26 320.000 25 160,000 24 80,000 23 40,000 22 20,000 21 10,000 20 5,000 19 2,500 18 1.300 17 640 16 320 15 160 14 80 13 40 12 20 11 10 10 5 Example 9 8 7 2.5 larger than 4 µm(c) = 22,340 1.3 0.64 larger than 6 µm(c) = 1,950 6 0.32 larger than 14 µm(c) = 5 4 0.16 0.08 3 0.04 ISO Code = 22/18/13 2 0.02 1 0.01 0 0.00 > 6 µm(c) > 14 µm(c) > 4 µm(c)

- Reproducibility below scale number 8 is affected by the actual number of particles counted in the fluid sample. Raw counts should be more than 20 particles. If this is not possible, then refer to bullet below.
- When the raw data in one of the size ranges results in a particle count of fewer than 20 particles, the scale number for that size range shall be labeled with the symbol ≥.

EXAMPLE: A code of $14/12/\ge 7$ signifies that there are more than 80 and up to and including 160 particles equal to or larger than 4 μ (c) per mL and more than 20 and up to and including 40 particles equal to or larger than 6 μ (c) per mL. The third part of the code, ≥ 7 indicates that there are more than 0.64 and up to and including 1.3 particles equal to or larger than 14 μ (c) per mL. The \ge symbol indicates that less than 20 particles were counted, which lowers statistical confidence. Because of this lower confidence, the 14 μ (c) part of the code could actually be higher than 7, thus the presence of the \ge symbol.

How Contaminants are Measured and Reported

ISO Scale Numbers– ISO 4406:1999

Cleanliness Levels– ISO 4406:1999

The following example shown in Figure 4 illustrates the cleanliness level, or ISO rating, of a typical petroleum-based fluid sample using the ISO Code 4406:1999 rating system.

The fluid sample contains a certain amount of solid particle contaminants, in various shapes and sizes.

Since the number of 4 μ (c) particles falls between 2500 and 5000, the first ISO range number is 19 using Table 1. The number of 6 μ (c) particles falls between 160 and 320 particles, so the second ISO range number is 15. The number of 14 μ (c) particles falls between 10 and 20, making the third range number 11. Therefore, the cleanliness level for the fluid sample shown in Figure 4 per ISO 4406:1999 is 19/15/≥11.

Figure 4. Determining the ISO Rating of a Fluid Using ISO 4406:1999

Sample	e Fluid (1 mL)	If Particle Count Falls Between	Scale Number is*	
Particle	Number	2500-5000	19	
Size	of Particles	1(0,320	15	
$\geq 4 \mu(c)$	3,000	160-320	15	
≥ 5 µ(c)	700	10-20	11	
≥ 6 µ(c)	200			
≥10 µ(c)			*Source: ISO 4406:199	
≥14 µ(c)	15	The Sample Fluid is ISO 19/		
≥15 µ(c)		*Note: When the raw data i		
≥20 µ(c)	10	ranges results in a particle count of fewer than 20 particles the range code for that number for		
≥30 µ(c)	3	that size range shall be pr		

Required Cleanliness Levels

The pressure of a hydraulic system provides the starting point for determining the cleanliness level required for efficient operation. Table 2 provides guidelines for recommended cleanliness levels based on pressure. In general, Schroeder defines pressure as follows:

Low pressure:	0-500 psi (0-35 bar)
Medium pressure:	500-2999 psi (35-206 bar)
High pressure:	3000 psi (206 bar) and above

A second consideration is the type of components present in the hydraulic system. The amount of contamination that any given component can tolerate is a function of many factors, such as clearance between moving parts, frequency and speed of operation, operating pressure, and materials of construction. Tolerances for contamination range from that of low pressure gear pumps, which normally will give satisfactory performance with cleanliness levels typically found in new fluid (ISO 19/17/14), to the more stringent requirements for servo-control valves, which need oil that is eight times cleaner (ISO 16/14/11).

Today, many fluid power component manufacturers are providing cleanliness level (ISO code) recommendations for their components. They are often listed in the manufacturer's component product catalog or can be obtained by contacting the manufacturer directly. Their recommendations may be expressed in desired filter element ratings or in system cleanliness levels (ISO codes or other codes). Some typically recommended cleanliness levels for components are provided in Table 3.

Table 2. Cleanliness Level Guidelines Based on Pressure

UITTESSUIE	
System Type	Recommended Cleanliness Levels (ISO Code)
Low pressure – manual control (0 - 500 psi)	20/18/15 or better
Low to medium pressure – electrohydraulic controls	19/17/14 or better
High pressure – servo controlled	16/14/11 or better
Table 3. Recommended Cleanline (ISO Codes) for Fluid Pow	
Components	Cleanliness Levels (ISO Code) 4 μ(c)/6 μ(c)/14 μ(c)
Hydraulic Servo Valves	15/13/11
Hydraulic Proportional Valves	16/14/12
Hydraulic Variable Piston Pump	16/14/12
Hydraulic Fixed Piston Pump	17/15/12
Hydraulic Variable Vane Pump	17/15/12
Hydraulic Fixed Vane Pump	18/16/13
Hydraulic Fixed Gear Pump	18/16/13
Ball Bearings	15/13/11
Roller Bearings	16/14/12
Journal Bearings (>400 rpm)	17/15/13
Journal Bearings (<400 rpm)	18/16/14
Gearboxes	18/16/13
Hydrostatic Transmissions	16/14/11
Pumps	16/14/12

This table is based on data shown in various hydraulic component manufacturer's catalogs. Contact Schroeder for recommendations for your specific system needs.

ISO 4409:1999	SAE AS 4059:E	NAS 1638-01/196	MIL-STD 1246A 1967	ACFTD Gravimetric Level-mg/L	Cleanliness Levels
24					(continued)
23/20/18		12			
22/19/17	12	11			
21/18/16	11	10			
20/17/15	10	9	300		
19/16/14	9	8			
18/15/13	8	7	200	1	
17/14/12	7	6			
16/13/11	6	5			
15/12/10	5	4		0.1	For your convenience, Table
14/11/9	4	3	100		4 provides a cross reference
13/10/8	3	2			showing the approximate correlation between severa
12/9/7	2	1		0.01	different scales or levels us
11/8/6	1	0			in the marketplace to quan
10/7/5	0	00			contamination. The table shows
8/7/4	00		50		the code levels used for
5/3/01			25		military standards 1638 an
2/0/0			5		1246A, as well as the SAE AS4059 standard.

Element Technical Data Fundamentals

Performance Specifications/ Filtration Ratings Schroeder filter elements meet a wide variety of requirements in today's workplace, from the simplest to the most sophisticated fluid power systems. Established industry standards enable users to select the optimal filter element for any application.

When evaluating the performance of hydraulic filter elements, the most important parameters to consider are:

(a) efficiency

(b) beta stability

(c) dirt holding capacity

(d) pressure drop vs. flow

(a) Efficiency, or filtration ratio, expressed by "Beta" (ß) relates to how well an element removes contamination from fluid. Higher efficiency translates to cleaner oil, better protection of system components, less down time for repair, and lower maintenance costs.

(b) Beta stability is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity (cold start). Beta stability is important because it relates to how well an element will perform in service over time. When the element is loaded with contamination, or when it is subjected to cold starts, will it perform as well as it did when new?

(c) Dirt holding capacity (DHC) is the amount of contamination that an element can trap before it reaches a predetermined "terminal" differential pressure. Dirt holding capacity is related to element life. Since elements with higher DHC need changed less frequently, DHC has a direct impact on the overall cost of operation. When selecting filter elements, it is beneficial to compare DHC of elements with similar particle removal efficiency.

(d) Pressure Drop vs. Flow is simply a measure of resistance to fluid flow in a system. It is important to consider the initial pressure drop (Δ p) across the filter element (and housing). Ideally, a filter element should be sized so that the initial pressure drop across the clean element (plus the filter housing drop) is less than half the bypass valve setting in the filter housing.

When selecting a filter element for your system, be sure to consider all four of these performance criteria. If an element is strong in three areas, but weak in another, it may not be the right choice. At every level of filtration, Schroeder's Excellement^{*} Z-Media^{*} elements offer the best combination of high efficiency, high beta stability, high dirt holding capacity, and low pressure drop.

The Multi-pass Test

Filter element efficiency ratings, beta stability, and capacities are determined by conducting a multi-pass test under controlled laboratory conditions. This is a standard industry test with procedure published by the International Standards Organization (ISO 16889). The multi-pass test yields reproducible test data for appraising the filtration performance of a filter element including its particle removal efficiency. These test results enable the user to: (1) compare the quality and specifications offered by various filter element suppliers and (2) select the proper filter element to obtain the optimal contamination control level for any particular system.

Hydraulic fluid (Mil-H-5606) is circulated through a system containing the filter element to be tested. Additional fluid contaminated with ISO MTD Test Dust is introduced upstream of the element being tested. Fluid samples are then extracted upstream and downstream of the test element.

Dirt holding capacity is defined as the total grams of ISO MTD Test Dust added to the system to bring the test filter element to terminal pressure drop.

Figure 5. Multi-Pass Test Schematic

The filtration ratio (more commonly referred to as the Beta ratio) is, in fact, a measure of the particle capture efficiency of a filter element.

Per ISO 16889
$$\beta_{x(c)} = \frac{\text{number of particles upstream @ x(c) microns}}{\text{number of particles downstream @ x(c) microns}}$$

where x(c) is a specified particle size.

Example:
$$^{B}10 = \frac{400}{100} = 4$$

This particle capture efficiency can also be expressed as a percent by subtracting the number 1 from the Beta (in this case 4) and multiplying it by 100:

Efficiency_{10} =
$$\frac{(4-1)}{4}$$
 x 100 = 75%

The example is read as "Beta ten is equal to four, where 400 particles, 10 microns and larger, were counted upstream of the test filter (before) and 100 particles, 10 microns and larger, were counted downstream of the test filter (after)."

The filter element tested was 75% efficient in removing particles 10 microns and larger.

To calculate a filter element's percent efficiency, subtract 1 from the Beta, divide that answer by the Beta, then multiply by 100.

Step 1: $ \beta 10(c) > +1000 $ Step 2:1000 -1 = 999Step 3:999 ÷ 1000 = .999%Step 4:.999 x 100 = 99.9%		Example	
Step 3: 999 ÷ 1000 = .999%	Step 1:	^β 10(c) > +1000	
•	Step 2:	1000 -1 = 999	
Step 4: .999 x 100 = 99.9%	Step 3:	999 ÷ 1000 = .999%	
	Step 4:	.999 x 100 = 99.9%	

According to ISO 16889, each filter manufacturer can test a given filter element at a variety of flow rates and terminal pressure drop ratings that fit the application, system configuration and filter element size. Results may vary depending on the configuration of the filter element tested and the test conditions.

Currently, there is no accepted ISO, ANSI, or NFPA standard regarding absolute ratings. Some filter manufacturers use $\beta_{\chi}(c) \ge 75$ (98.7% efficiency) for their absolute rating. Others use $\beta_{\chi}(c) \ge 100$ (99.0% efficiency), $\beta_{\chi}(c) \ge 200$ (99.5% efficiency), or $\beta_{\chi}(c) \ge 1000$ (99.9% efficiency). Performance of Schroeder elements is shown in the Element Performance Chart for each filter housing in Sections 3 through 8 at a number of filtration ratios to allow the user to evaluate our performance against that of our competitors.

Efficiency

Efficiency /

(Beta)

Filtration Ratio

Filtration Ratio

Beta Stability

Beta stability is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity. An element's beta stability is displayed in the Filtration Ratio (Beta) vs. Differential Pressure curve from a typical multi-pass test report per ISO 16889. Good beta stability is demonstrated by consistent or improving efficiency as differential pressure builds across the element. Conversely, decreasing efficiency as pressure builds is a sign of poor stability. Poor beta stability is an indication of a filter element's structural deficiency. It is a sign of potential problems in a "real world" situation. Contamination, "cold starts", and flow surges can all create high differential pressure across an element that may cause efficiency to decrease if it is not structurally sound. In cases of "cold starts" and flow surges, the media structure in elements with poor stability can become permanently damaged in milliseconds. The result is lower efficiency and decreased system protection without warning to the operator. High beta stability results when an element is well-built with quality, durable materials. Strength of filter media and reinforcement layers, impervious seaming, proper end cap adhesion, and a rigidly supported structure all play a part in an element's beta stability. Excellement^{*} media structure typically maintains beta stability over 100 psi.

Example of poor beta stability – efficiency declines as differential pressure increases.

Example of Excellement^{*} beta stability – efficiency does not decline as differential pressure increases.

Microscopic Photo - 50x magnification

Top: competitor's media Bottom: Schroeder Excellement^{*} Z-Media^{*}. Thin, weak media cannot withstand differential pressure as well as Z-Media^{*}.

This photo shows a comparison of our competitors filtering layer media versus our Schroeder Excellement^{*} Z-Media^{*}. Schroeder Z-Media^{*} offers better depth filtration to withstand a higher differential pressure and entrap more contaminant / particles.

Dirt holding capacity (DHC) is the amount of contaminant (expressed in grams) the element will retain before it goes into bypass. All other factors being equal, an element's DHC generally indicates how long the element will operate

until it needs to be replaced. The element's life span is directly related to the cost of operating the filter.

Dirt holding capacity, sometimes referred to as "retained capacity," is a very important and often overlooked factor in selecting the right element for the application. The dirt holding capacity of an element is measured in grams of ISO medium test dust contaminant as determined from the multi-pass test (ISO 16889). When selecting filter elements, it is beneficial to compare the dirt holding capacities of elements with similar particle removal efficiencies.

When sizing a filter, it is important to consider the initial differential pressure (ΔP) across the element and the housing. Elements offering a lower pressure drop at a high Beta efficiency are better than elements with a high ΔP at the same efficiency. At every level of filtration, Schroeder's Excellement^{*} Z-Media^{*} elements offer the best combination of high efficiency, high stability, high dirt holding capacity, and low pressure drop. The pressure drop of an element is determined by testing according to ISO 3968.

The collapse (crush) rating of a filter (determined by ISO 2941/ANSI B93.25) represents the differential pressure across the element that causes it to collapse. The collapse rating of a filter element installed in a filter housing, with a bypass valve, should be at least two times greater than the full flow bypass valve pressure drop. The collapse rating for filter elements used in filter housings with no bypass valve should be at least the same as the setting of the system relief valve upstream of the high-crush element. When a high collapse element becomes clogged with contamination all functions downstream of the filter will become inoperative.

Dirt Holding Capacity

Collapse Rating

Pressure Drop

Element Media Selection Considerations The Right Media for the Right Application=Job Matched Filtration

Filtration Application Guidelines Selecting the proper Schroeder media for your application is easy if you follow these simple guidelines.

Step 1. Remember that the key to cost effective contamination control is to maintain the system's cleanliness at the tolerance level of the system's most sensitive component. So, the first step is to identify the most sensitive component.

Step 2. Determine the desired cleanliness level (ISO Code) for that component by referring to Figure 3 on page 13 or by contacting the component manufacturer directly.

Step 3. Identify the Schroeder filter medium referencing Table 6 that will meet or exceed the desired cleanliness level.

Step 4. Remember to regularly check the effectiveness of the selected media through the use of contamination monitoring equipment.

Table 6. Schroeder Element Media Recommendations

Desired Cleanliness Levels	Schroeder
(ISO Code)	Media
20/18/15-19/17/14	Z25
19/17/14-18/16/13	Z10
18/16/13-15/13/10	Z5
15/13/10-14/12/9	Z3
14/12/9-13/11/8	Z1

Effect of Ingression

Filter element life varies with the dirt holding capacity of the element and the amount of dirt introduced into the circuit. The rate of this ingression in combination with the desired cleanliness level should be considered when selecting the media to be used for a particular application. Table 7 provides recommendations accordingly.

The amount of dirt introduced can vary from day to day and hour to hour, generally making it difficult to predict when an element will become fully loaded. This is why we recommend specifying a Dirt Alarm^{*}.

Schroeder-designed Dirt Alarms^{*} provide a vital measure of protection for your system by indicating when the filter element needs to be changed or cleaned. Schroeder filters are available with visual, electrical and electrical-visual combination Dirt Alarms^{*}. These indicators may also be purchased as separate items. For more information on Dirt Alarms^{*}, see Appendix A.

Table 7. Recommended Schroeder Media to Achieve Desired Cleanliness Levels Based on Ingression Level

Desired Cleanliness Levels (ISO Code)	Ingression Rate	Schroeder Element Medium
20/18/15	High	Z25
19/17/14	Low	Z25
19/17/14	High	Z10
18/16/13	Low	Z10
18/16/13	High	Z5
15/13/10	Low	Z5
15/13/10	High	Z3
14/12/9	Low	Z3
14/12/9	High	Z1
13/12/9	Low	Z1

To obtain the desired cleanliness level (ISO Code) using the suggested Schroeder filter medium, it is recommended that a minimum of one-third of the total fluid volume in the system pass through the filter per minute. If fluid is filtered at a higher flow rate, better results may be achieved. If only a lesser flow rate can be filtered, a more efficient media will be required.

Systems operating in a clean environment, with efficient air-breather filters and effective cylinder rod wiper seals, may achieve the desired results at a lower turnover rate. Systems operating in a severe environment or under minimal maintenance conditions should have a higher turnover. Turnover must be considered when selecting the location of the system's filter(s).

Since the pressure drop versus flow data contained in our filter catalog is for fluids with a viscosity of 150 SUS (32.0 cSt), and a specific gravity of .86, we are often asked how to size a filter with a viscosity other than 150 SUS (32.0 cSt) or a specific gravity other than .86. In those instances where the viscosity or specific gravity is significantly higher, it may be necessary to use a larger element. To make this determination, we need to calculate the life of the element, using the following equation:

$$EL = RC - (H + E)$$

Where:	
EL = Element Life (expressed in psi)	H = Housing pressure drop
RC = Relief valve cracking pressure	E = Element pressure drop

1. The housing pressure drop can be read directly from the graph. This value is not affected by viscosity or the number of elements in the housing, since housing flow is turbulent.

2. The element pressure drop is directly proportional to viscosity, since element flow is laminar.

Schroeder's "rule of thumb" for element life, as calculated from the above equation, is to work towards a differential pressure drop that is no more than half (50%) of the bypass setting.

The interval between element change outs can be extended by increasing the total filter element area. Many Schroeder filters can be furnished with one, two, or three elements or with larger elements. By selecting a filter with additional element area, the time between servicing can be extended for little additional cost.

Schroeder filters have been used successfully to filter a variety of fire resistant fluids for over five decades. Filtering these fluids requires careful attention to filter selection and application. Your fluid supplier should be the final source of information when using these fluids. The supplier should be consulted for recommendations regarding limits of operating conditions, material and seal compatibility, and other requirements peculiar to the fluid being used within the conditions specified by the fluid supplier.

High Water Content Fluids

High water content fluids consist primarily of two types: water and soluble mineral base oil, and water with soluble synthetic oil. The oil proportion is usually 5%, but may vary from as low as 2% to as high as 10%.

Standard Schroeder Z1, Z3, Z5, Z10, and Z25 elements are compatible with both types of high water content fluids. Filter sizing should be the same as with 150 SUS (32 cSt) mineral based hydraulic oil. Z1 and Z3 elements may be used; however, element change outs will be more frequent. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter housing should be anodized. This can be accomplished by using the "W" adder as shown in the filter model number selection chart.
- When using 95/5 fluids, check with fluid supplier for compatibility with aluminum.
- Buna N or Viton[®] seals are recommended.
- The high specific gravity and low vapor pressure of these fluids create a potential for severe cavitation problems. Suction filters or strainers should not be used. The Schroeder Magnetic Separator (SKB), page 327, with its low pressure drop, is recommended for pump protection from ferrous or large particles.

Invert Emulsions

Invert emulsions consist of a mixture of petroleum based oil and water. Typical proportions are 60% oil to 40% water. Standard Schroeder filters with Z10 and Z25 media elements are satisfactory for use with these fluids. Filters should be sized conservatively for invert emulsions. These fluids are non-Newtonian—their viscosity is a function of shear. We recommend up to twice the normal element area be used as space and other conditions permit.

Amount of Fluid Filtered

Sizing a Filter Element

Fluid Compatibility: Fire Resistant Fluids Some special factors that need to be considered in the selection process include the following:

Fluid Compatibility: Fire Resistant Fluids (cont.)

- Potential exists for cavitation problems with invert emulsions similar to high water based fluids. SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton[®] seals are recommended.

Water Glycols

Water glycols consist of a mixture of water, glycol, and various additives. Schroeder Z3, Z5, Z10 and Z25 elements are satisfactory for use with these fluids. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter should be anodized. This can be accomplished by using the "W" option as shown in the filter model number selection chart.
- Potential exists for cavitation problems with water glycols similar to high water based fluids. SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton[®] seals are recommended.

Phosphate Esters

Phosphate esters are classified as synthetic fluids. All Schroeder filters and elements can be used with most of these fluids. Sizing should be the same as with mineral based oils of similar viscosity. Some special factors that need to be considered in the selection process include the following:

- For phosphate esters, specify EPR seals (designated by "H" seal option) for all elements. As a general rule, all Z-Media^{*} (synthetic) is compatible and 10 and 25 μ only E media (cellulose) with phosphate esters.
- For Skydrol^{*}, only 3, 5, 10, and 25 μ Z-Media^{*} (synthetic) should be used, and "H.5" should be designated as the seal option. The "H.5" seal designation calls for EPR seals and stainless steel wire mesh in element construction.

Pressure Drop Correction for Specific Gravity

Pressure drop curves shown in this catalog are predicated on the use of petroleum based fluid with a specific gravity of 0.86. The various fire resistant fluids discussed in this section have a specific gravity higher than 0.86, which affects pressure drop. Use the following formula to compute the correct pressure drop for the higher specific gravity:

Corrected pressure drop = $\frac{\text{Fluid specific gravity}}{0.86} \times \text{Catalog pressure drop}$

Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.

7 Steps to Selecting a Filter

In the new era, systems are getting smaller and more compact, causing flow rates in hydraulic reservoirs to decrease, as well as a tighter space for overall reservoir components.

Without a properly sized filter and element in your machine's reservoir, operators can experience occurrences such as: foaming, cavitation, shortened fluid lifespan, poor response time from hydraulic valves, increase in replacement filter elements, and more valve and pump repairs.

In this section, we will walk you through our 7 Steps for Choosing the Correct Filtration.

Example Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (144 L/min) return flow, 4000 psi (275 bar) system pressure, and a total system volume of 60 gallons (227 liters), with a non-pressurized reservoir. The fluid is 150 SUS.

Step 1: "Operating Pressures"

Determine the operating pressure of the system you are looking to apply filtration to.

Step 2: "Flow Rate"

Look at all of the characteristics of the fluid that is needing the filtration, including the flow rate.

Step 3: "MVP Components"

Determine what component is the most critical to your operation.

Step 4: "ISO Level"

Reference our chart on page 13 to determine the recommended ISO level of your MVP component (determined in Step 3). This will help you select what media type will help you achieve your cleanliness goal.

Step 5: "Fluid Type"

Ask yourself "what type of fluid is being filtered?" and "what is my main contamination type?" (Reference contamination types on page 16).

Step 6: "Temperature"

Determine the highest and lowest temperatures of your operating fluid.

Step 7: "Piecing It All Together"

Based on the previous steps, you can now take the information learned, calculate overall system differential pressure, and determine the right choice for filtration.

By following these simple steps, we can guarantee you will see cleaner fluid. In addition, all major hydraulic components should be working to expectation, last longer, and ultimately save you and your company money.

Seven Steps to Selecting a Filter

Filter Selection Considerations

Filter Location

Pressure filtration: Pressure filters usually produce the lowest system contamination levels to assure clean fluid for sensitive high-pressure components and provide protection of downstream components in the event of catastrophic failures. Systems with high intermittent return line flows may need only be sized to match the output of the pump, where the return line may require a much larger filter for the higher intermittent flows. See Figure 6(a).

Return line filtration: Return line filters are often considered when initial cost is a major concern. A special concern in applying return line filters is sizing for flow. Large rod cylinders and other components can cause return line flows to be much greater than pump output. Return lines can have substantial pressure surges, which need to be taken into consideration when selecting filters and their locations. See Figure 6(b).

Re-circulating filtration: While usually not recommended as a system's primary filtration (due to the high cost of obtaining adequate flow rates) re-circulating, or off-line, filtration is often used to supplement on-line filters when adequate turnover cannot be obtained with the latter. It is also often an ideal location in which to use a water removal filter. Off-line re-circulating filters normally do not provide adequate turnover flow rates to handle the high contamination loading occasioned by component failures and/or inefficient maintenance practices. See Figure 6(c).

Suction filtration: Micronic suction filters are not recommended for open-loop circuits. The cavitation these filters can cause significantly outweighs any advantage obtained by attempting to clean the fluid in this part of the system. SKB magnetic suction separators are recommended, as they will protect the pump from large and ferrous particles, without the risks of cavitation.

Breather filtration: Efficient filter breathers are required for effective contamination control on non-pressurized reservoirs and should complement the liquid filtration component.

Multiple filtration: For systems incorporating large total fluid volumes, it may be necessary to employ filters in more than one location. Multiple pressure filters, pressure and return line filters, and recirculating filters are examples of multiple filtration applications. Pressure Return Line Line Filter Filter Air Breather Filter Kidney Loop/ Off-Line Filtration Unit

Figure 6(c). Re-circulating Filtration Circuit

Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (114 L/min) return flow, 4000 psi (275 bar) system pressure, and total system volume of 60 gallons (227 liters), with a non-pressurized reservoir.

Step 1 example. The servo valve is the system's most sensitive component. Referring to Figures 2 and 3 (page 13), you can see that a cleanliness level (ISO Code) of 16/14/11 or better is recommended for a high pressure system containing a servo valve.

Step 2 example. Table 8 recommends the Schroeder Z5 element media or finer to achieve a cleanliness level of 16/14/11.

Step 3 example. A combination of a pressure filter upstream of the servo valve and a return line filter would provide cost effective contamination control for servo systems.

Step 4 example. Filter model DF40, shown on page 65, is selected as the appropriate pressure filter because of its 30 gpm and 4000 psi capacities. A look at the Element Selection Chart for the DF40 located on page 67 verifies that the CZ5 element will handle 20 gpm, and the appropriate model number is DF40-1CZ5.

The ZT in-tank return line filter is selected for the 30 gpm return flow and the Z5 media. As shown in the model selection chart for the ZT on page 266, the proper model number to meet the specifications is ZT-8ZZ5.

Step 5 example. Using our Accessories Catalog; L-4329, select the ABF-3/10-S breather/strainer.

Step 6 example. Implement the appropriate manufacturing, assembly and maintenance contamination control procedures.

Step 7 example. Check start-up and ongoing system cleanliness (ISO Codes). Schroeder offers oil sampling kits that can be forwarded to a lab for particle counting and determination of cleanliness levels. Table 8. Schroeder Element Media Recommendations

Desired Cleanliness Levels	Schroeder
(ISO Code)	Media
20/18/15-19/17/14	Z25
19/17/14-18/16/13	Z10
18/16/13-15/13/10	Z5
15/13/10-14/12/9	Z3
14/12/9-13/11/8	Z1

Filtration Selection Exercise

Rated Fatigue Pressure

The application of individual filters should take fatigue ratings into consideration when there are flow or pressure variations creating pressure peaks and shock loads.

Typical hydraulic systems that use highly repetitive operations include plastic injection molding machines, die-cast machines, and forging and stamping press systems. In these and other similar applications, rated fatigue pressure should be considered when selecting a filter.

It has been common practice in the fluid power industry to establish component ratings for maximum operating pressure based on the minimum yield pressure, which is usually one third of the minimum yield pressure for higher-pressure components and one fourth of the minimum yield pressure for lower-pressure components. This rating method has proved satisfactory for many years, but it does not directly address the subject of fatigue.

The National Fluid Power Association has introduced a method (NFPA T2.6.1) for verifying the fatigue pressure rating of the pressure-containing envelope of a metal fluid power component. In this method, components are cycled from 0 to test pressure for 1 million cycles (10 million cycles is optional). The rated fatigue pressure (RFP) is verified by testing. We establish the desired RFP from design, then we calculate the cycle testing pressure (CTP), and then conduct tests at CTP per 1,000,000 cycles.

The T2.6.1 Pressure Rating document is available from the National Fluid Power Association, 3333 N. Mayfair Road, Milwaukee, WI 53222-3219.

Model	Rated Fatigue Pressure psi (bar)	Model	Rated Fatigue Pressure psi (bar)
NF30/NFS30	2400 (165)	LW60	5800 (400)
YF30	1800 (125)	ZT	90 (6)
DF40/CF40	1800 (125)	RT/LRT	90 (6)
PF40	2500 (173)	QT/IRF	100 (7)
LC50	5000 (350)	KF3	290 (20)
CFX30	1800 (125)	KL3	300 (20)
RF60	3500 (240)	TF1	270 (19)
CF60	4000 (276)	LF1/MLF1	250 (17)
VF60	3300 (230)	RLD	350 (24)
KF30	2500 (170)	RLT	750 (52)
TF50	3500 (240)	GH	725 (50)
KF50/KC50	3500 (240)	GHHF	725 (50)
KFH50	3500 (240)	SRLT	750 (52)
MKF50	3500 (240)	KF8/QF5/3QF5	500 (35)
KC65	5500 (380)	K9/2K9/3K9	750 (52)
NOF50-760	4000 (275)	QF15/QLF15/SSQLF15	800 (55)
FOF60/PF40	4000 (275)	HS60	6000 (415)
CTF60	6000 (415)		

Table 9. Fatigue Pressure Ratings

Contact Factory For: RFS50, FOF30, NOF30-05, MTA, MTB, KT, BFT, PAF1, MAF1, MF2, RTI, KTK, LTK, QF5 and QFD5 Fatigue Ratings. All water service and GeoSeal[®] models match their standard model for Rated Fatigue Pressure.

Manifold Mounting In some filtration applications, it is advantageous to have the inlet and outlet ports mount directly onto a block without any hydraulic hose in between. Schroeder offers several such manifold-mounted filter models, including NFS30, YF30, PF40, LC50 DF40, RFS50, KF30, TF50, KF50, KC50, and KFH50. Drawings for these porting options are labelled "Optional Subplate Porting" and are included on respective catalog pages.

No-Element Indicator

The No-Element Indicator is a unique, patented signaling device designed to alert the user if no filter element is present in the housing. This virtually eliminates any possible confusion on the part of the user that the filter contains an element and is functioning in a normal manner.

The tamper proof system utilizes a patented internal valve design. If the element is not installed in the housing, the valve restricts flow, causing a high pressure drop. The high pressure drop, in turn, causes the Schroeder Dirt Alarm^{*} to indicate that the element is not installed in the housing.

The only way to deactivate the indicator is to install the element in the housing.

This feature is available in the following filter models: RT, TF1, KF3, CF40, DF40, CF60, TF50, KF30, KF50, KC50, KC65, and MKF50 that are equipped with a Schroeder Dirt Alarm^{*}. No-element indicator is not available when the indicator is placed in the cap in base-ported filters.

Ordering Information

For each filter that is shown in Sections 3, 4, 5, and 6 there is a Model Number Selection Chart. This chart lists all the configurations and accessories available for that specific filter.

Model numbers for all Schroeder filters are formulated by listing the appropriate codes, from left to right, according to the designated boxes shown in the chart. The letter or letter/number combination identifies the basic filter series. For instance, as shown in Figure 7, KF303KZ10PD5 designates a KF30 high-pressure, base-ported filter with three synthetic 3 μ elements, Buna N seals, 1¹/₂" NPTF porting, and a visual cartridge Dirt Alarm. Figure 7. Model Number Selection

How to Build a Valid Model Number for a Schroeder KF30:

Thermal

Lockout

MS14DCLCT = Low current MS14DCT

Model Number Selection

NOTES:

Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.

- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 7. For options F & F32, bolt depth .75" (19 mm).

For option O, O-rings included; hardware not included.

- Box 8. X and 50 options are not available with KFN30.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Options N, G509 and G588 are not available with KFN30. N option should be used in conjunction with dirt alarm.

Element Selection Chart for Flow Requirements

For each filter shown in the catalog, there is an element selection chart to determine the correct element to be used for a particular flow requirement (see Figure 8 for an example). The chart uses a petroleum-based hydraulic fluid with 150 SUS viscosity.

The process involves the following: Determine the working pressure of the system (3000 psi in this example) and the maximum flow (75 gpm). Then select the media (Z-Media^{*}), and the micron filtration (3 μ). For example, the filter selected, following the above steps, is a KF30-3KZ3-P-D5. If the system pressure is 5000 psi and all other parameters are the same, then the model number would be KF50-3KZ3-P-D5.

Figure 8. KF30 Housing and Element Selection Chart for Flow Requirement

	Elem	nent	Element selections are predicated on the use of 15									
Pressure	Series	Part No.	petroleum base	etroleum based fluid and a 40 psi (2.8 bar) bypass valve.								
		K3	1K3		2K3		3K3	See MFK50		<50		
	E Media	K10	1K10		2K	10	3K10	3K 1	3K10 See MFK5		e MFK50	
	meula	K25	1K25				2K25		25			
То	Z Media	KZ1	1KZ1 2KZ			2KZ1			3KZ1			
3000 psi (210 bar)		KZ3	1KZ3			2KZ3		3	SKZ3			
(KZ5	1KZ5			2	KZ5		3KZ5			
		KZ10		1KZ10				2KZ	10	3K10		
		KZ25	2KZ25						2KZ25			
	Flow	gpm o	25	50	75	100	125	150			<u> </u>	
	FIOW	(L/min) o	100	200	300	400	50	0 60	0		Т	

Shown above are the elements most commonly used in this housing. requires 2" porting (P32)

Element pressure drop information in this publication is based on the viscosity (150 SUS or 32 cSt) and specific gravity (0.86) of the most commonly used hydraulic oils.

If the viscosity or specific gravity of the fluid you are designing for is different from these, use the following formulas to obtain the correct ΔP values.

Corrected element ΔP	= ΔP from curve	x —	SUS viscosity 150	— x —	specific gravity 0.86
		OI	R		
Corrected element <u>AP</u>	$= \Delta P$ from curve	x —	cST viscosity 32	— x —	specific gravity 0.86

Correcting for Viscosity and Specific Gravity

Z-Media

Z-Media® Elements (Synthetic)

The special class of micro-glass and other fibers used in Z-Media® are manufactured with utmost precision, to specific thicknesses and densities, and bonded with select resins to create material with extra fine passages. No other filter media can provide the benefits of Schroeder's Excellement® Z-Media®: maximum dirt-holding capacity, superior particle capture, excellent beta stability, minimum pressure drop, high flow rate and low operating cost.

The typical multiple layer construction (shown in Figure 9) has evolved from comprehensive laboratory testing to provide extended element life and system protection. Each successive layer performs a distinct and necessary function. The outermost layer is designed to maintain element integrity. Beyond this layer is a spun bonded scrim, offering coarse filtration and protection for the filtering layers within. Multiple sheets of fine filtering media follow, providing intricate passageways for the entrapment of dirt particles. Together, the various layers of filter media provide the ideal combination for peak filtration performance.

Schroeder's complete line of quality filtration elements—including Schroeder's original element designs, BestFit® replacement elements, CoreCentric® coreless elements and DirtCatcher®—are manufactured with Excellement® Z-Media®.

The better efficiencies, excellent stability, lower pressure drops, and higher dirt holding capacities provided by Excellement® Z-Media® mean cleaner oil, longer element life, and less downtime. They outlast, outperform, and excel in every measurable benchmark.

The Excellement® Z-Media® series of filter elements have been designed, tested, and proven to be the best performing elements available on the market today.

Z-Media

Excellement® Elements Have Improved Filtration Ratios

Schroeder Z-Media® elements are tested under cyclic flow conditions to verify flow fatigue characteristics. Extra strength and rigidity are engineered into every one of these filter elements through the use of epoxy-coated steel wire mesh and additional support layers. (ZX Series high crush strength capabilities are available for 3000 psi applications.)

A wide range of Schroeder Z-Media® elements enable you to achieve the desired cleanliness level for your system. Developed through comprehensive laboratory testing and field performance studies, these elements have been proven effective. Shown in Table 10 are cleanliness levels that can be achieved using Z-Media® filter elements in various applications.

Table 11 shows the ISO 16889 filtration ratios (Betas) for Schroeder Z-Media® elements Z1, Z3, Z5, Z10 and Z25. Figure 10 depicts the information in Table 11 graphically and provides corresponding % efficiencies. The numbers contained in the tables are simply specific data points from the plots for the respective media shown. The filtration ratio (Beta) is shown on the left side and the equivalent particle capture efficiency (%) is shown on the right for particle sizes shown across the bottom. The filtration ratio (in Table 13) indicates the particle size at which the filtration ratio for the element is greater than a given number.

Features and Benefits

- Better flow characteristics: Lower pressure drop and improved flow stability
- Improved efficiency: Cleans oil in less time and improved reliability
- Higher dirt holding capacity:Longer element life, lower maintenance costs (labor)and decreased inventory costs (parts)
- Multi-layer construction: Each layer performs a distinct function
- Beta stability:Excellement® Z-Media® maintains efficiency as differential pressure increases

Table 10. Typical Field Applicat	ion Results
Application	Cleanliness* Level
Railroad Maintenance-of-Way Equipment	ISO 19/17/14
Power Generation Turbine Skid	ISO 17/15/13
Timber Harvesting Equipment	ISO 17/15/12
Plastic Injection Molding Machine	ISO 17/15/12
Paper Mill Lube System	ISO 16/14/11
Aircraft Test Stand	ISO 15/13/10
Hydraulic Production Test Stand	ISO 13/11/8

*Higher or lower levels can be obtained by selecting coarser or finer Schroeder Z-Media[®], respectively.

Table 11. Z-Media [®] Filtration Ratios									
Element		Filtration Ratio Per ISO 16889							
Media	ßx(c) ≥ 75 (98.7%)	ßx(c) ≥ 100 (99%)	ßx(c) ≥ 200 (99.5%)	ßx(c) ≥ 1000 (99.9%)					
Z1	<4.0	<4.0	<4.0	4.2					
Z3	<4.0	<4.0	<4.0	4.8					
Z5	<4.0	4.2	4.8	6.3					
Z10	6.8	7.1	8.0	10.0					
Z25	16.3	17.1	19.0	24.0					

Series ZX High Collapse Elements (Synthetic)

Schroeder Z-Media® elements are tested under cyclic flow conditions to verify flow fatigue characteristics. Extra strength and rigidity are engineered into every one of these filter elements through the use of epoxy-coated steel wire mesh and additional support layers. (ZX Series high crush strength capabilities are available for 3000 psi applications.)

A wide range of Schroeder Z-Media® elements enable you to achieve the desired cleanliness level for your system. Developed through comprehensive laboratory testing and field performance studies, these elements have been proven effective. Shown in Table 10 are cleanliness levels that can be achieved using Z-Media® filter elements in various applications.

Schroeder Element Media Z-Media

Excellement Elements Have High Dirt Holding Capacities

Dirt holding capacity (DHC), simply stated, is the amount of solid contamination that an element can hold before the filter housing reaches its terminal bypass setting. The higher the dirt holding capacity, the longer the element will last. This translates to fewer element purchases, less frequent equipment shutdowns, decreased maintenance time, and reduced inventory. In short, it means money saved.

Figures 11(a) - 11(e). DHC Comparison for Z-Media® Elements and Competition

Table 1	Table 12. Typical Dirt-Holding Capacities for Z-Media [®] Element (in grams)									
Turne	El	ement S	ize (Diam	neter x Ler	ngth)					
Type Medium	2" x 6" 6R	3" x 8" 8T	4" x 9" K	5" x 18" BB	6" x 39" Q					
Z1	15	51	112	268	1485					
Z3	15	52	115	275	1525					
Z5	16	59	119	301	1536					
Z10	14	55	108	272	1432					
Z25	15	56	93	246	1299					

The data shown represents the cumulative results of multi-pass tests in accordance with ISO 16889. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities.

Z-Media

Cost Per Gram Analysis/ Excellement® Efficiency®

A monetary value can be calculated for a filter element by considering its dirt holding capacity and efficiency in combination with its cost. To make this determination, first find out how much you're spending to clean your fluid to a desirable cleanliness level. Then figure out how much contamination (in grams) that the element is actually retaining. These two numbers will make it possible to calculate the grams of dirt

Figure 10. Z-Media® Excellement® Efficiency

per dollar spent. It's one thing to clean the oil, but it's another to clean the oil and simultaneously provide maximum element life. With Excellement® Z-Media®, you don't need to sacrifice element life to achieve high efficiency.

We are confident that the high efficiencies, exceptional dirt holding capacities, and low pressure drops—combined with Schroeder's competitive prices— make elements made

with Excellement® Z-Media® the best value in the market today.

Element Case Weights

In proportion to the high volume of filter elements we make and ship, one of the most frequently asked questions our order desk receives involves the weights of various cases of elements. In an effort to include this information in this edition of the catalog, we made the assumption that the various micron ratings within a media type weigh the same; i.e., a KZ1 weighs approximately the same as a KZ25. The following table represents our findings given the above assumption:

		Case Lot	Weight (lb.)			Case Lot	Weight (lb.)			Case Lot	Weight (lb.)
A	paper	12	7	к	paper	12	17	8Z	paper	12	12
AZ	synthetic (Z)	12	8	КZ	synthetic (Z)	12	22	8ZZ	synthetic (Z)	12	13
BB	paper	б	29	KW	Water Removal	12	18	9V	synthetic (Z)	12	14
BBZ	synthetic (Z)	6	29	КК	paper	6	18	14V	synthetic (Z)	6	10
С	paper	12	7	KKZ	synthetic (Z)	6	20	14C	synthetic (Z)	6	11
CZ	synthetic (Z)	12	8	27K	paper	6	20	18L	synthetic (Z)	6	20
сс	paper	12	11	м	paper	12	33	39Q	paper	1	17
CCZ	synthetic (Z)	12	15	N	paper	12	4	39QPML	synthetic (Z)	1	18
FZX3	synthetic (Z)	12	3	NZ	synthetic (Z)	12	7	39QCL	synthetic (Z)	1	11
FZX10	synthetic (Z)	12	3	NN	paper	12	6	16Q	paper	1	8
6G	synthetic (Z)	12	8	NNZ	synthetic (Z)	12	9	16QPML	synthetic (Z)	1	15
9G	synthetic (Z)	12	13	6R	synthetic (Z)	12	10	16QCL	synthetic (Z)	1	3

GeoSeal®

U.S. Patent D658740

GeoSeal

GeoSeal® Elements

Far too often, customers make purchasing decisions based solely on price, only to be extremely disappointed with the poor quality delivered by low cost imitations. To make the matter worse, the customer often points an accusing finger at the filter housing manufacturer for poor performance, rather than the inadequate element they used as a replacement for the original Schroeder element.

GeoSeal® is a patented offering from Schroeder that provides a unique way for OEM's to retain replacement element business and to keep a filter's performance at the level that it was supplied. The idea is brilliantly simple: the critical sealing arrangement between a filter housing and its replacement element takes on a shape other than the standard circular arrangement. Specifically, the element grommet & mating bushing are given a new geometric shape. Figures 1 & 2 show the initial configuration being used.

Figure 1. Filter element with GeoSeal grommet.

Figure 2. Filter housing (cut-away) with GeoSeal bushing.

Availability

Currently, the GeoSeal® design is available on the K-size element and in the following Schroeder filter series: KF30, KF50, KC50, KC65, MKF50, K9, 2K9, 3K9, KF3, KL3, MLF1, KF5, RT, ZT, and LRT

How To Order

To order the filter housing and element incorporated with the GeoSeal® design:

• "G" is added to the front of the housing model code (KF30, KF50, KC50, KC65, MKF50, KF3, KL3, MLF1, KF5, K9, 2K9, 3K9, RT, ZT, and LRT).

• "BG" is added to the element model code for RT (one end of the element has the GeoSeal®; the other end has an integrated bypass valve)

Ge	eoSeal® Filters Selection	Guide			
		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	High Pressure GeoSeal [®] Filters				
	<u>GKF30 GeoSeal</u> [®]	3000 (210)	100/150 (380/570)	KG, KKG, 27KG	99
	<u>GKF50 GeoSeal</u>	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	99
	<u>GKC50 GeoSeal</u> [®]	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	107
	<u>GMKF50 GeoSeal</u> [∞]	5000 (345)	200 (760)	KG, KKG, 27KG	111
	<u>GKC65 GeoSeal[®]</u>	6500 (450)	100 (380)	KG, KKG, 27KG	115
	Medium Pressure GeoSeal [®] Filters				
ters	<u>GKF5 GeoSeal</u> [∞]	500 (35)	100 (380)	KG	171
Ë	<u>GK9 GeoSeal</u> [®]	900 (60)	100 (380)	KG, KKG, 27KG	179
GeoSeal [®] Filters	<u>G2K9 GeoSeal</u> [®]	900 (60)	100 (380)	KG, KKG, 27KG	183
Geo	<u>G3K9 GeoSeal</u> [®]	900 (60)	100 (380)	KG, KKG, 27KG	183
	Low Pressure GeoSeal® Filters				
	<u>GKF3 GeoSeal</u> ≊	300 (20)	100 (380)	KG, KKG, 27KG	225
	<u>GKL3 GeoSeal</u> [®]	300 (20)	120 (455)	KG, KKG, 27KG, 18LG	229
	<u>GMLF1 GeoSeal</u> [®]	300 (20)	200 (760)	KG	237
	<u>GZT GeoSeal</u> [®]	100 (7)	40 (150)	8GTZ	257
	<u>GRT GeoSeal</u> [®]	100 (7)	100 (380)	KBG, KKBG, 27KBG	269
	<u>GLRT GeoSeal</u> [≗]	100 (7)	150 (570)	18LG	277

Private Labeling

Private Labeled Elements

Schroeder offers a full line of branding solutions for air breathers, spin-ons, and replacement elements. Using the Element Private Label Form (L-2993), OEMs can obtain Schroeder elements with their very own custom logo (for Spin-on elements and air breathers, reference L-2994 on our website). Furnishing elements with custom branding enables OEMs to capture their aftermarket element business. Custom labeled products also protect against the use of unauthorized elements, thus reducing the potential of field warranty issues. Additionally, private branded products are proprietary and will not be shared with others without written consent from the OEM.

Steps for Establishing an Outer Wrap/End Cap Markings

- 1. Elements can be private labeled by marking the end caps, adding a private labeled plastic outerwrap, or both.
- 2. Customer name and part number will be etched on to one of the end caps with Schroeder date codes unless otherwise specified.
 - a. Logos can be laser etched onto the end cap if space allows on the desired element (a .DXF file of the logo is required).
- When requesting a plastic outer wrap, the customer must supply all artwork in a vector file format (.Al or .EPS).
- 4. Once the artwork is received, a RIP file (used to print the wrap) will be created and a sample swatch will be provided for customer approval (average lead time is approximately 2 weeks).
- The sample printed polyester swatch will be sent to the customer for approval. The sample swatch can be temporarily wrapped around a SBF-9600-8 element, but this must be requested.
- 6. Once the customer has approved the sample, element part numbers (specific to element size) can be established and structured. Cost, delivery and required minimum quantity may depend on element size and private labeling style.

POSITION 1 TOULISOU PART NUMBER

Packaging Capabilities

Schroeder has the ability to brand both individual and master cartons as requested. We can apply the customer name, part number, logo (black and white - .jpg file), and other customer texts. Bar coding and customer pre-printed boxes can also be requested (set up fees and minimum order quantities are required for customer pre-printed boxes).

Extra Aftermarket Retention Advantages:

Incorporating a private labeling program has shown that upwards of 60% of aftermarket element business is retained. Instituting of a private branding program also protects against the use of inferior and/or unqualified replacement element substitutions.

Schroeder Element Media Dirt Catcher

Patent # 7384547

DirtCatcher® Elements

DirtCatcher® elements from Schroeder offer a superior alternative to inside-out filtration. The patented outer shell prevents contaminants from falling back into the system during element changes while still providing the excellent dirt retention of Excellement® media. DirtCatcher® elements are currently available in single and double length K, BB, and 18L size elements, and feature Excellement® media within.

Currently, DirtCatcher® elements can be purchased separately or as part of our RT, KF3, KF8, BFT, and LRT filter assemblies.

The DirtCatcher® solution provides peace of mind to those concerned with dirt escaping from elements during the removal process while delivering all the advantages of Schroeder original (outside-in flow) elements:

- Better Pressure Drop
- Greater Surface Area
- Better Pleat Stability

This design is only available from Schroeder. It goes without saying that DirtCatcher's unique design also allows OEM's to retain 100% of after-market business.

Schroeder Element Media

Anti-Static Elements

During the production of hydraulic oils, "additive packages" are introduced into the base oils to give the fluids certain characteristics they need for the demanding conditions of today's systems. The additives improve viscosity, reduce friction, prevent wear, and allow the fluid to tolerate high temperatures without oxidation.

Some oils are produced with toxic aromatics and heavy metals, with a high electrical conductivity, but because of their toxicity and potential threat to the environment, they no longer comply with current, international environmental standards. Other groups of oils are produced with the appropriate, approved additive packages, often labeled as highly refined or synthetic. They contain no toxins or carcinogens, and are free of heavy metals, but due to their metal-free nature, they have a lower electrical conductivity rating.

Low electrical conductivity means that any charges that are generated through the oil flow may not be dissipated quick enough, thus causing sparking. Ultimately, this can cause explosions in the reservoir or damage to vital hydraulic components, such as valves and filters.

The sparks can also interfere with or damage expensive electronic components, and form oil-ageing deposits, such as varnish. Varnish then settles on the oily surfaces of the vital components and has a detrimental effect on how well your machine functions. Potential consequences of varnish also includes seized valve spools, overheated solenoids, and extremely short filter element service life.

The Anti-Stat and Anti-Stat Premium elements were developed to greatly reduce or eliminate electrostatic discharging problems that can occur during filtration of hydraulic and lube fluids. By combining proven Excellement® media and ASP® technology, it is now possible to offer both high filtration efficiency and electrical conductivity.

Other key areas that can contribute to Electrostatic Discharge:

- Filter Media media layer construction can influence high voltage charge
- Hydraulic Fluids group II and III have low conductivity
- Temperature higher voltage charge will generally exist with lower temperature

Anti-Stat versus Anti-Stat Premium Media

Since levels of ESD in a hydraulic system can vary, Schroeder Industries provides two expertly engineered anti-static element options for remediating static buildup in hydraulic equipment:

- Standard anti-static element option
- High filtration efficiency
- Prevents static buildup in fluids with medium conductivity levels and moderate levels of ESD
- Engineered for fluid conductivity levels of 100 pS/m and higher

- Advanced anti-static element option
- High filtration efficiency
- Prevents static buildup in fluids with low conductivity levels and extreme levels of ESD
- Engineered for fluid conductivity levels of 100 pS/m and lower

Schroeder Element Media

Anti-Stat

Choosing The Right Anti-Static Elements For Your Application

Depending on the level of conductivity in your hydraulic fluid, different element options are best suited to High, Medium, or Low/Critical conductivity. Below is a selection of commonly used oil types, and the media Schroeder Industries recommends for each. Remember: higher conductivity means less static, and lower conductivity means more static.

Flow [l/min]

Schroeder Element Media

BestFit[®] High Performance Replacement Elements

Schroeder Industries manufactures over 2000 BestFit® performance replacement elements. In addition, Schroeder Industries produces all of the technical data to support the sale of these products. The BestFit® family consists of standard cartridge and spin-on replacements, CoreCentric® coreless elements, high collapse elements, and the melt-blown and spun-bonded process filtration elements. Most importantly, we offer the easiest way to determine the Schroeder equivalent of more than 42,000 competitive elements using the Schroeder online element search, accessible through our web site at www.schroederindustries.info.

Cross Reference Element Search Tool

Simply clicking on "BestFit® Element Cross Reference" on the Schroeder Industries home page (www.schroederindustries.com) allows you to match filter elements by entering either the manufacturer's name or part number.

There are two ways to search on the Schroeder BestFit® cross reference page. The first way is to type a competitor element part number in the search bar. When searching by competitor part number, the search will activate as soon as three characters are entered (no spaces or symbols). The second way is to use the two drop down menus to find the competitor and part number you are trying to cross. When a cross has been located, the results table includes the corresponding BestFit® replacement element, dimensions (inside diameter, outside diameter and length), element style (e.g., cartridge or spin-on), media type (metal mesh, water removal, synthetic glass, or paper) and performance specifications, including beta ratios and dirt holding capacity. Also, a link to the left of the results table links to a generalized element drawing with all of the desired information on it. If there is an element that cannot be crossed, Schroeder Industries can work with you in finding a replacement solution to your element problem!

Schroeder BestFit® Elements include the following series:

QCLZ (8314 replacement)	SBF-0160R	SBF-0660R	SBF-170B	SBF-7500	SBF-9021	SBF-MF-100
QPML (8310 replacement)	SBF-0161D	SBF-0661D	SBF-2000	SBF-7507	SBF-9100	SBF-PXX
SBF-0030D	SBF-0240D	SBF-0850R	SBF-2544	SBF-8200	SBF-9400	SBF-PXW
SBF-0030R	SBF-0240R	SBF-0950R	SBF-2600R	SBF-8300	SBF-9600	SBF-RP83
SBF-0031D	SBF-0241D	SBF-1000	SBF-270	SBF-8400	SBF-9601	SBF-TXX
SBF-0060D	SBF-0280D	SBF-1001	SBF-270B	SBF-8500	SBF-9604	SBF-TXW
SBF-0060R	SBF-0281D	SBF-1002	SBF-370	SBF-8700	SBF-9650	SBF-UE210
SBF-0661D	SBF-0330D	SBF-1010	SBF-370B	SBF-8800	SBF-9651	SBF-UE219
SBF-0110D	SBF-0330R	SBF-1050	SBF-6000	SBF-8900	SBF-9800	SBF-UE310
SBF-0110R	SBF-0331D	SBF-1051	SBF-6400	SBF-8914	SBF-9801	SBF-UE319
SBF-0111D	SBF-0500R	SBF-1300R	SBF-6500	SBF-937	SBF-9901	SBF-UE610
SBF-0160D	SBF-0660D	SBF-170	SBF-7400	SBF-9020	SBF-BPE-7509	SBF-UE619

Schroeder BestFit[®] element model codes are determined by replicating the element model code it is replacing. An example of a breakdown of the model code is shown below:

Schroeder BestFit® Model Code: SBF-9600-13Z10V

CoreCentric® Coreless Element

The CoreCentric® Coreless element is an environmentally friendly, all plastic element (no metal parts) that can be crushed, shredded or burned. These alternative methods of disposal will not only greatly reduce solid waste volumes, but also reduce disposal costs simultaneously.

CoreCentric® Coreless elements are designed to ensure optimum performance and ease of service. Built with Excellement® Z-Media®, CoreCentric® Coreless elements (QCL) fit in all Pall 8304 and 8314 housings and are available in the 8", 13", 16", and 39" lengths. Note: To ensure fast delivery, CoreCentric® elements are available with Viton® seals only.

CoreCentric® elements are designed with an integral patent design, cylindrical center core that provides column strength, added structural stability, and easy element removal. This core eliminates both the sticking and vertical sagging problems that can occur when using other manufacturer's coreless designs.

Schroeder's CoreCentric® elements are the only coreless element designed with backbone. We call it the "CORE ON CORE" element design.

SCAFOECE

Melt-Blown and Spun-Bonded Filter Elements For Process and Cutting Fluid Applications

Used in process and cutting fluid applications, melt-blown and spun-bonded elements are manufactured with either polypropylene or nylon filter media. Element fibers are blown onto and thermally bonded to a central support core with increasing fiber density towards the core, creating depth filtration. All layers are interlinked to offer maximum support while ensuring high void volume. The thermal bonding process minimizes media migration, providing consistent and reliable performance. They excel in dirt holding capacity and have low pressure drops. They also offer wide chemical compatibility, as well as being structurally sound and able to withstand high flow rates.

Melt-blown and spun-bonded elements fit most industrial housings incorporating the double open ended sealing arrangement, as well as standard polypropylene, PVC, and polycarbonate housings. In addition, these elements are available with end caps for most plug-in style O-ring fittings, making them ideally suited to more critical applications requiring the assurance of these double seals.

They have a wide range of applications including:

- Machine tool coolants
- Roll mill coolants
- EDM fluids
- Quench oils

- Parts washing solvents
- Electrophoretic paints
- Etching solutions
- Plating solutions
- Light oils
- Fuels
- High water containing fluids

For technical information on process filtration solutions, request catalog #L-2728.

Electric Drive Elements

The use of Schroeder's GREEN, Electric Drive (E-Drive) Media filtration technology guarantees safe and reliable equipment operation, all-while conserving the use of energy.

Part of Schroeder's Energy Saver initiative, filter elements made using the all-new E-Drive Media are characterized by a low pressure drop, making them suitable for low energy requirements compared to conventional hydraulic elements under the same ambient conditions.

In certain applications, the E-Drive Media can lower the pressure drop to a point where consumers may be able to size down their horsepower requirements on their current motor.

E-Drive filter elements are made using an all-new specialty formulated, high efficiency, low differential pressure media and are the perfect choice for use in electric hydraulic drive motor-pump units. Use them for conserving energy bills and wherever high viscosity fluids are employed – especially at low temperatures that produce a cold start behavior.

Technical Specs (evaluated in K-sized element):

Our testing demonstrates a great comparison of a 10-micron Electric Drive media element to one with the typical synthetic microglass media that is available on the market today.

- Element Collapse Rating: 145 psid (10 bar)
- Temperature Range: -22°F to 212°F (-30°C to 100°C)
- Flow Direction: Outside to Inside

Media Type	β200 [μm(c)]	Pressure Drop Factor [psid/gpm]
E-Drive Media (10 μ)	10.2	0.050
Typical Synthetic Media (10 μ)	10.6	0.156

E Media Elements (Cellulose)

Recognized as one of the industry's most cost effective media available in the marketplace, Schroeder E Media is an excellent choice for a wide variety of hydraulic system applications.

The E3 media is a specially designed mixture of cellulose and micro-glass, which provides both high dirt holding capacity and high particle capture efficiency, resulting in one of the industry's most cost effective cellulose media. Schroeder E10 media, used in the popular K10 element, is a standard for numerous industries, enabling continuous, trouble-free system operation.

Please note: The "E" identification for the media is not shown in the element model number. For example, our standard K3 and K10 elements are constructed with E media.

Table 14 shows the filtration ratios for Schroeder E media elements, while Figure 18 depicts this information graphically and provides corresponding % efficiencies for both the E3 and E10 media.

Table 14. E Media Efficiency Ratings per ISO 4572 without Antistatic Additive								
	Filtration Ratios (Beta)							
Element Media	ß _X ≥ 75 (98.7%)	ß _X ≥ 100 (99%)	ß _X ≥ 200 (99.5%)	ßց	<u> </u> ն5	^ß 10	ß ₂₀	
E3	6.8	7.5	10.0	28	48	200	>1000	
E10	15.5	16.2	18.0	—	1.3	10	400	

The cost effectiveness of E media becomes even more apparent when dirt holding capacity is considered (see Table 15). The dollars spent per gram of dirt retained with an E media element makes it an excellent choice for many contamination control programs.

Table 15. Typical Dirt Holding Capacities for E Media Elements (ACFTD capacity in grams)

Element Media				
Size	E3	E10		
N	8	7		
NN	12	10		
С	14	12		
CC	30	25		
А	16	13		
К	54	44		
9C	30	25		
BB	162	132		
18L	108	88		
М	50	37		
8Z	39	32		
8T	39	32		
Р	—	37		
9V	32	26		
14V	51	41		
6R	9	8		

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive.

Figure 16. E Media Element Efficiencies Per ISO 4572

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive.

M Media Elements (Reusable Metal)

Schroeder offers a line of metal reusable elements to meet specific application needs. These rugged elements are constructed of high-strength woven stainless steel wire mesh. The wire mesh and center tube are epoxy-bonded to the end caps.

The element design incorporates shallow pleats which provide an efficient flow pattern with optimum pressure drop. In addition, the shallow pleat construction simplifies the cleaning process. These elements may be cleaned using a liquid solution (either Kleenite or Oakite) or by ultrasonics. Request Schroeder's #L-2094 Data Sheet for details regarding recommended cleaning procedures.

Schroeder metal elements are available in a variety of sizes for 10, 25, 60, 150, and 260 μ filtration and are shown in Table 16. The size and type of wire mesh used for each micron rating are shown in Table 17.

Table 17. Micron Ratings and Wire Mesh					
10 µ	200 x 1400 twilled Dutch weave				
25 µ	165 x 1400 twilled Dutch weave				
60 µ	50 x 250 plain Dutch weave				
150 µ	100 x 100 square Dutch weave				
260 µ	60 x 60 square Dutch weave				

F-Pack Media

Today's demand for the use of fire-resistant fluids that assure safe and dependable operation in an electrohydraulic control system (EHC) demand peak performing media. The change-over to Schroeder "F" Pack media from a traditional, high performance, synthetic media results in lower, clean pressure drop and higher efficiency. Most importantly, the change eliminates cast-off, or shedding of synthetic fibers, which can result in servo valve failure.

Construction

- Total stainless steel, sintered depth style media
- Pleated media
- Sintered construction prevents shedding of media
- Outside/in flow

Performance

- Extremely efficient: ß3=1000 and ß10=1000
- Excellent choice for use with phosphate esters and Fyrquel[®] fluids
- Operating temperature -20°F to 350°F with use of Viton[®] seals
- Element collapse rating 3000 psid for use at high differential pressures

W Media Elements (Water Removal)

Water can cause a host of contamination problems in hydraulic and lubrication systems. It can exist in a system in a dissolved state or in a free state. In a dissolved state, the fluid is holding the water. In a free state, the water is above the specific saturation point of the fluid, and thus cannot dissolve or hold more water. A mild discoloration of the fluid generally indicates that a free water condition exists in the system.

Schroeder's uniquely designed water removal elements employ a quick-acting water-absorbent polymer, capable of holding over 400 times its own weight in water. These elements are ideal for in-line use, re-circulating filter systems, or in portable filtration carts.

Water retention is positive, even under high pressure, so there is no downstream unloading. However, water retention capacity is dependent on the type of fluid and additives present in a system, its viscosity and its flow rate. As a result, retention capacity may be diminished by some additives present in the system, by a high viscosity, or a high flow rate.

Table 18 shows water holding capacity and Table 19 shows the pressure drops for select W media elements. (On net page) For best results, flow rates through a single KW element should be 10 gpm (38 L/min) or less.

Aqua-ExcellementTM High Efficiency Particulate Water Removal Media

Schroeder offers Aqua-ExcellementTM filter elements, which excel at removing both water and solid particulates from petroleum-based fluids. The filtering media incorporated into Aqua-ExcellementTM elements is referred to as ZW and includes layers of Schroeder's high efficiency Excellement® Z-Media® for capturing particulate contaminations in combination with water removal capabilities. The high efficiencies, outstanding beta stabilities, and excellent dirt holding capacities that Excellement® customers have become accustomed to are present in the new ZW media. Paired together, these two types of media make a winning combination and are highly effective at filtering out water and solids simultaneously.

Aqua-ExcellementTM elements are currently available in multiple sizes for both cartridge and spin on style. Equipped, with ZW media, Schroeder MFS/AMS series carts can be effectively utilized for on-site flushing applications for cleaning stagnant large volume reservoirs. When used on a kidney loop system installed on power units, the ZW media allows for smaller kidney loop system and lower dimensional clearance and weight. Other applications include mobile filtration systems and bulk transfer systems.

Shown below is a breakdown of the layers of the new K-size ZW cartridge element.

Schroeder Kidney Loop Systems and Mobile Filtration Carts can utilize the KZW

ZW Spin-On Elements

NOTE: When using any K-size housing do not exceed 14 gpm

Epoxy-coated steel wire fabric provides maximum support and rigidity.

- Spun-bonded scrim provides downstream media support and increased stability
- Water removal media
- Two layers of Z-Media provide maximum efficiency and dirt-holding capacity with minimal pressure drop
- Epoxy-coated steel wire fabric provides maximum support and rigidity.

Total water injection flow rate: 2.0 ml/min.

Table 18. Water Holding Capacity						
Element	Flow	Capacity				
Model No.	gpm (L/min)	mL	ounces			
KW	20 (75)	150	5			
KW	16 (60)	200	7			
KW	10 (38)	320	11			
KW	2 (7.5)	500	17			
6RW	20 (75)	31	1			
6RW	2 (7.5)	104	4			
8TW	20 (75)	93	3			
8TW	2 (7.5)	311	11			
9VW	20 (75)	81	3			
9VW	2 (7.5)	270	9			
14VW	20 (75)	130	4.4			
14VW	2 (7.5)	435	14.7			
16QW	60 (225)	480	16			
16QW	10 (38)	1350	45			
39QW	140 (530)	1100	37			
39QW	22 (83)	3100	105			
MW	14 (53)	100	3.5			
MW	1.5 (6)	350	12			

Table 19. Pressure Drop						
Element Model No.	Flow gpm (L/min)	ΔP psi (bar)				
KW	20 (75)	2.5 (0.17)				
14VW	20 (75)	2.5 (0.17)				
16QW	65 (246)	2.5 (0.17)				
39QW	150 (570)	2.5 (0.17)				

Table 20. Maximum Recommended Flow Rate					
Element	Maximum Recom	mended Flow Rate			
Model No.	gpm	L/min			
KW	20	75.7			
6RW	4	16			
8TW	12	47			
9VW	11	41			
14VW	20	75			
16QW	60	225			
39QW	140	530			
MW	16	6			

Table 21. KZW Cartridge Element Dirt and Water Holding Capacities							
Element	DHC	Water Removal Capacity		Filtration Ratios (Beta)			
Part Number	(g)	2.5 gpm	10 gpm	ßx ≥ 200	ßx ≥ 1000	∆P Factor	
KZW1	61		134 mL/ 4.53 oz	<4.0	<4.0	0.43	
KZW3/KKZW3	64/128	107 /		4.0	4.8	0.32	
KZW5/KKZW5	63/126	197 mL/ 6.66 oz		5.1	6.4	0.28	
KZW10/KKZW10	57/114			6.9	8.6	0.23	
KZW25/KKZW25	79/158			15.4	18.5	0.14	

Aqua-ExcellementTM High Efficiency Particulate Water Removal Media

Table 22. ZW Spin-On Element Dirt and Water Holding Capacities								
Element	DHC (g)	Water Remo	val Capacity	Filtration Ratios (Beta)				
Part Number		2.5 gpm	10 gpm	ßx ≥ 200	ßx ≥ 1000			
10MZW10	53	185 mL / 6.3 oz	126 mL / 4.3 oz	6.9	8.6			

Notes Section:				

Section 3 High Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported High Pressure Filters				
	<u>NF30</u>	3000 (210)	20 (75)	N, NN	49
	<u>NFS30</u>	3000 (210)	20 (75)	N, NN	53
	<u>YF30</u>	3000 (210)	25 (100)	4Y, 8Y	57
	<u>CFX30</u>	3000 (210)	30 (115)	CC, DD	61
	<u>PLD</u>	3000 (210)	100 (380)	DV	65
	<u>CF40</u>	4000 (275)	45 (170)	C, CC	69
	<u>DF40</u>	4000 (275)	30 (113)	C, CC	69
	<u>PF40</u>	4000 (275)	50 (190)	5H, 9H	73
	RFS50	5000 (345)	30 (115)	8R	77
	<u>RF60</u>	6000 (415)	30 (115)	8R	81
	<u>CF60</u>	6000 (415)	50 (190)	CC	85
	<u>CTF60</u>	6000 (415)	75 (284)	5CT, 8CT, 14CT	89
	<u>VF60</u>	6000 (415)	70 (265)	9V	93
	<u>LW60</u>	6000 (415)	300 (1135)	39ZP	97
	Base-Ported High Pressure Filters				
(isi	KF30 QUALITY	3000 (210)	100/150 (380/570)	K, KK, 27K	101
8	KF50 QUALITY	5000 (345)	100/150 (380/570)	K, KK, 27K	101
- 65	<u>TF50</u>	5000 (345)	40 (150)	A, CC	105
- 00	KC50 QUALITY	5000 (345)	100/150 (380/570)	K, KK, 27K	109
(15	<u>MKF50</u>	5000 (345)	200 (760)	K, KK, 27K	113
ers	<u>MKC50</u>	5000 (345)	200 (760)	K, KK, 27K	113
Ĩ	KC65 QUALITY	6500 (450)	100 (380)	K, KK, 27K	117
ure	MKC65	6000 (413)	300 (1136)	K, KK, 27K	121
High Pressure Filters (1500 - 6500 psi)	Hydrostatic (Bidirectional) Flow High	Pressure Filters			
h Pr	<u>HS60</u>	6000 (415)	120 (450)	13HZ	125
Higl	<u>MHS60</u>	6000 (415)	120 (450)	13HZ	125
	KFH50 (Base-Ported)	5000 (345)	70 (265)	K, KK, 27K	129
	In-Line Filters				
	<u>LC60</u>	6000 (415)	8 (30)	SSD	133
	<u>LC35</u>	3500 (241)	15 (57)	BS	135
	<u>L150</u>	5000 (345)	35 (130)	IZ	137
	<u>LC50</u>	5000 (345)	9 (35)	5H	141
	Servo Protection (Sandwich) Filters D	O7, DO3, Moog, Pa	arker & Vickers		
	<u>NOF30-05</u>	3000 (210)	12 (45)	NN	143
	<u>NOF50-760</u>	5000 (345)	15 (57)	SV	147
	FOF60-03	6000 (415)	12 (45)	F	151
	Manifold Mount Filter Kits (Bowls & In	stallation Drawing	s)		
	<u>NMF30</u>	3000 (210)	20 (75)	NN	155
	RMF60	6000 (415)	30 (115)	8R	157
	Cartridge Elements for use in Manifold	d Applications			
	<u>14-CRZX10</u>	3000 (210)	6 (23)		159
	20-CRZX10	3000 (210)	12 (45)	—	160

Top-Ported Pressure Filter NF30

NF30

WeightModel No. of filter in photograph is NF3	<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header>	20 gpm <u>75 L/min</u> 3000 psi 210 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF50 RF60 CF60 VF60 LW60 KF30 KF50 TF50 KC50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range:	10,000 psi (690 bar), per NFPA T2.6.1 2400 psi (165 bar), per NFPA T2.6.1 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 85 psi (5.9 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.4 lbs. (1.5 kg) 4.4 lbs. (2.0 kg)	Filter Housing Specifications	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35
High Water Content All Z-Mee Invert Emulsions 10 and 2	ia (cellulose), Z-Media [*] and ASP [*] Media (synthetic)	Fluid Compatibility	LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03 NMF30 RMF60 14-CRZX10

NF30

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		io Per ISO 4572/NI ated particle counter (A per ISO 4402		Filtration Ratio Using APC calibrat	
Element	ß _x ≥75	ß _x ≥100	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
NZ1 / NNZ1 / NLKZ1 / NNLKZ1	<1.0	<1.0	<1.0	<4.0	4.2
NZ3 / NNZ3 / NLKZ3 / NNLKZ3	<1.0	<1.0	<2.0	<4.0	4.8
NZ5 / NNZ5 / NLKZ5 / NNLKZ5	2.5	3.0	4.0	4.8	6.3
NZ10/NNZ10/NLKZ10/NNLKZ10	7.4	8.2	10.0	8.0	10.0
NZ25 / NNZ25 / NLKZ25 / NNLKZ25	18.0	20.0	22.5	19.0	24.0
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

Dirt Holding Capacity

Element	DHC (gm)	Element	DHC (gm)
NZ1 / NLKZ1	12	NNZ3 / NNLKZ3	16
NZ3 / NLKZ3	12	NNZ5 / NNLKZ5	18
NZ5 / NLKZ5	12	NNZ10/NNLKZ10	15
NZ10 / NLKZ10	11	NNZ25 / NNLKZ25	15
NZ25 / NLKZ5	11	NNZX3	11*
NNZ1 / NNLKZ1	15	NNZX10	13*

* Based on 100 psi terminal pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Element Performance Information & Dirt Holding Capacity

Top-Ported Pressure Filter

NF30

 $\Delta P_{\rm housing}$ NF30 $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine ΔP_{fitter} at 15 gpm (57 L/min) for NF301NZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) according to the graph for an NF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this, case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for an NZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{max} , is calculated by adding ΔP_{max} with the true element pressure differential, ($\Delta P_{ament} * V_{f}$). The ΔP_{ament} from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 7 \text{ psi } [0.48 \text{ bar}] | \Delta P_{\text{element}} = 8 \text{ psi } [0.55 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 7 \text{ psi} + (8 \text{ psi} * 1.1) = 15.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .48 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.1 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
N3	1.10
N10	0.17
N25	0.10
NAS3	0.92
NAS5	0.71
NAS10	0.57

NF30 Top-Ported Pressure Filter

	Filter Model	BOX 1 BOX 2	2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8	BOX 9	
Ν	lumber	NF30 -				
Se	lection	BOX 1 BOX 2	2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8 E	3OX 9	
		NF30 - 1N		S D5 -	= NF301N2	Z10SD5
		BOX 1	BOX 2		BOX 3	
		Filter Series	Number & Size of Elements		Media Type	
		NF30	N = Single Length	Omit = E Media (Cellu	llose)	
		NFN30	1 NN = Double Length	Z = Excellement [®] Z	Z-Media [°] (synthetic)	
		(Non-bypassing: requires ZX	NLK = Single Length	AS = Anti-Stat Med	ia (synthetic)	
		high collapse elements)	Lock & Key	ZX = Excellement [®] Z-	Media [®] (high collapse c	enter tube; NN size only)
		NFLK30	NNLK = Double Length Lock & Key	M = Media (reusab	le metal mesh) N size	only
			BOX 4	BOX 5	BOX 6	BOX 7
			Micron Rating	Seal Material	Porting	Bypass
		1 = 1 Micron	(Z, ZX media)	Omit = Buna N	B = ISO228 G-¾"	Omit = 40 PSI
		3 = 3 Micron	(AS,E, Z, ZX media)	V = Viton°	$P = \frac{3}{4}$ " NPTF	bypass
		5 = 5 Micron	(AS, Z, ZX media)	W = Buna N,	S = SAE-12	50 = 50 PSI Bypass
		10 = 10 Micror	n (AS,E,M, Z, ZX media)	Anodized		X = Blocked
			n (E, Z, ZX media)	Aluminum parts		bypass
		60 = 60 Micror				(omit box 7 when NFN30 is selected)
			BOX			
			Dirt Alarm [®]	Options		BOX 9
			Omit = None D = Pointer			Additional Options
		Visual	D5 = Visual pop-up			Omit = None
		Visual with Thermal Lockout	D8 = Visual w/ therma	al lockout		$G792 = \frac{7}{16}$ "-20 UNF drain on housing
			MS5 = Electrical w/ 12 i MS5LC = Low current MS5	n. 18 gauge 4-conductor ca	ble	0
				l connector (male end only)		
			MS10LC = Low current MS ² MS11 = Electrical w/ 12 f			
		Electrical		n Brad Harrison connector (r	male end only)	
			MS12LC = Low current MS ²	12 ather-packed sealed connec	tor	
			$MS16LC = Low current MS^2$			
			MS17LC = Electrical w/ 4 pi MS5T = MS5 (see above)		ector	
NOTES:			MSSLCT = Low current MSS			
Box 2. Replacement elem	ent part	Electrical	MS10T = MS10 (see above			
numbers are identi contents	ical to	with	MS10LCT = Low current MS ² MS12T = MS12 (see above			
of Boxes 2, 3, 4 and	15.	Thermal Lockout	MS12LCT = Low current MS			
Box 5. E media (cellulose) are only available v			MS16T = MS16 (see above MS16LCT = Low current MS			
N seals. For options W, all aluminum pa	s V and	The state of	MS17LCT = Low current MS			
anodized.		Electrical Visual	MS13DC = Supplied w/ thre MS14DC = Supplied w/ 5 pin		ght (male end)	
Viton [®] is a registere trademark of DuPo		Electrical	MS13DCT = MS13 (see above	e), direct current, w/ therma		
Elastomers.		Visual with Thermal	MS13DCLCT = Low current MS ⁻ MS14DCT = MS14 (see above		llockout	
Box 7. When X is paired w standard filter serie			MS14DCLCT = Low current MS			
standard bushing a spring plate will be	and					

spring plate will be used. 52 SCHROEDER INDUSTRIES

Manifold Mounted Pressure Filter NFS30

Ν		

Kodel No. of filter in photograph is N	<image/> <image/> <image/> <image/> <image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header>	20 gpm 75 L/min 3000 psi 210 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF50 RF60 CF60 CF60 CF60 LW60 LW60 KF30 KF50 TF50 KC50
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of NFS30-1NN: Weight of NFS30-1NN:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids 3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 2400 psi (165 bar), per NFPA T2.6.1 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 85 psi (5.9 bar) Aluminum Aluminum 3.6 lbs. (1.6 kg) 4.3 lbs. (2.0 kg) 4.50" (115 mm)	Specifications	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60
Type Fluid Appro Petroleum Based Fluids All E M High Water Content All Z-M Invert Emulsions 10 and	priate Schroeder Media ledia (cellulose), Z-Media* and ASP* Media (synthetic) ledia* and ASP* media (synthetic) l 25 μ Z-Media* and 10 μ ASP* media (synthetic) 0 and 25 μ Z-Media* and 3, 5 and 10 μ ASP* Media (synthetic)	Fluid Compatibility NOF-	LC35 LI50 LC50 F30-05 50-760 F60-03 NMF30 RMF60 RMF60 CRZX10

NFS30 Manifold Mounted Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filtration Ratio Per ISO **Filtration Ratio** 4572/NFPA T3.10.8.8 per ISO 16889 Using automated particle counter (APC) calibrated per ISO 4402 Using APC calibrated per ISO 11171 $\beta_v(c) \ge 1000$ Element $\beta_x \ge 75$ $\beta_x \ge 100$ $\beta_x \ge 200$ $\beta_x(c) \ge 200$ NZ1/NNZ1 <1.0 <1.0 <1.0 <4.0 4.2 NZ3/NNZ3 <1.0 <1.0 <2.0 <4.0 4.8 NZ5/NNZ5 2.5 3.0 4.0 4.8 6.3 NZ10/NNZ10 8.2 10.0 8.0 10.0 7.4 NZ25/NNZ25 18.0 20.0 22.5 19.0 24.0

		DHC (gm)
12	NNZ1	15
12	NNZ3	16
12	NNZ5	18
11	NNZ10	15
11	NNZ25	15
	12 12 11	12 NNZ3 12 NNZ5 11 NNZ10

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Element Performance Information & Dirt Holding Capacity

Manifold Mounted Pressure Filter NFS30

Drop Information Based on Flow Rate and Viscosity

Pressure

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for NFS301NZ10SO using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 10 psi (.69 bar) on the graph for the NFS30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the NZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 10 \text{ psi} [.69 \text{ bar}] | \Delta P_{\text{element}} = 8 \text{ psi} [.55 \text{ bar}]$

 $V_f = 175$ SUS (37.2 cSt) / 150 SUS (32 cSt) = 1.2 $\Delta P_{\text{siter}} = 10 \text{ psi} + (8 \text{ psi} * 1.2) = 19.6 \text{ psi}$

 $\frac{OR}{OR}$

 $\Delta P_{\text{filter}} = .69 \text{ bar} + (.55 \text{ bar} * 1.2) = 1.35 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{f_{c}} \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP
N3	1.10	NN3	0.77
N10	0.17	NN10	0.13
N25	0.10	NN25	0.07
NAS3	0.92	NNAS3	0.56
NAS5	0.71	NNAS5	0.46
NAS10	0.57	NNAS10	0.35

NFS30 Manifold Mounted Pressure Filter

BOX 7 Bypass Omit = 40 PSI **Bypass** 50 = 50 PSI

Bypass

X = Blocked bypass (Omit box 7 if NFSN30 is used)

Filter					
Model Number	BOX 1	OX 2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8		
Selection	BOX 1 BO	OX 2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8		
	NFS30 – 1	IN – Z – 10 –	- SO - D	= NFS301NZ10SOD)
	BOX 1	BOX 2		BOX 3	
	Filter Series	Number & Size of Elements	Ν	Media Type	
	NECOO	N = Single Length	Omit = E Media (Cellul	ose)	
	NFS30	1 NN = Double Length	Z = Excellement [®] Z	-Media [®] (synthetic)	
	NFSN30		AS = Anti-Stat Media		
	(Non-bypassing: requires ZX		ZX = Excellement [®] Z-	Media [®] (high collapse center	tube)
	high collapse elements)		M = Media (reusabl	e metal mesh) N size only	
		BOX 4	BOX 5	BOX 6	
		Micron Rating	Seal Material	Porting	
	1 = 1 Micro	n (Z, ZX media)	Omit = Buna N	SO = SAE-12	C
	3 = 3 Micro	n (AS,E, Z, ZX media)	V = Viton [*]	PO = $\frac{3}{4}$ " NPTF	
	5 = 5 Micro	n (AS, Z, ZX media)	W = Buna N,	FO = 1" SAE 4-bolt	
	10 = 10 Micr	on (AS,E,M, Z, ZX media)	Anodized	flange Code 61	
	25 = 25 Micr	on (E, Z, ZX media)	Aluminum parts	O = Manifold	
	60 = 60 Micr	on (M media)			(On
		BO	X 8		
		Dirt Alarm	°Options		
		Omit = None			
	Visual	D = Pointer D5 = Visual pop-up			
	Visual with				
	Thermal Lockout	D8 = Visual w/ them	nal lockout		
			in. 18 gauge 4-conductor	cable	
		MS5LC = Low current M MS10 = Electrical w/ D	55 N connector (male end only	v)	
		MS10LC = Low current M			
	Electrical	MS11 = Electrical w/ 12 MS12 = Electrical w/ 5	<pre>! ft. 4-conductor wire pin Brad Harrison connector</pre>	(male and only)	
Replacement element part numbers are identical to		MS12 = Electrical W/S12 MS12LC = Low current M		(male end only)	
contents			eather-packed sealed conne	ector	
of Boxes 2, 3, 4 and 5.		MS16LC = Low current M MS17LC = Electrical w/4	pin Brad Harrison male con	nector	
E media (cellulose) elements are only available with Buna		MS5T = MS5 (see above			
N seals. For options V and W, all aluminum parts are		MS5LCT = Low current M MS10T = MS10 (see abo			
anodized.	Electrical	MS10T = MS10 (see aboMS10LCT = Low current M	,		
Viton [®] is a registered trademark of DuPont Dow	with Thermal	MS12T = MS12 (see abo	,		
Elastomers.	Lockout	MS12LCT = Low current M MS16T = MS16 (see abo			
For option O, O-rings included; fastening		MS16LCT = Low current M	,		
hardware not included.	The second	MS17LCT = Low current M			
When X is paired with a	Electrical Visual		readed connector & light in Brad Harrison connector &	light (male end)	
standard filter series, a standard bushing and	Electrical	MS13DCT = MS13 (see abo	ve), direct current, w/ therm		
spring plate will be used.	Visual with Thermal	MS13DCLCT = Low current M MS14DCT = MS14 (see abo		al lockout	
For options SO, PO and FO, available dirt alarm is D only	Lockout	MS14DCLCT = Low current M			

NOTES:

- Box 2. R n C 0 Box 5. E a Ν
 - W a V tr E
- Box 6. Fo h
- box 7. W st st SI
- Box 8. Fo is D only.

Top-Ported Pressure Filter YF30

No. of filter in photograph is YF308	<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header></section-header></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header>	25 gpm <u>100 L/min</u> 3000 psi 210 bar	NFS3 YF3 PL CFX3 PL CF4 DF4 PF4 RF55 RF6 CF6 CTF6 VF6 LW6 KF3 KF5 TF5
Flow Rating:	Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids	Filter	KC5 MKF5 MKC5
Max. Operating Pressure:	3000 psi (210 bar)	Housing	MKF5
-			MKF5 MKC5
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C)	Housing	MKF5 MKC5 KC6
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005	Housing	MKF5 MKC5 KC6 MKC6 HS6
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum	Housing	MKF5 MKC5 KC6 MKC6 HS6 MHS6
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg)	Housing	MKF MKC KC MKC HS MHS KFH
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg)	Housing	MKF MKC KC MKC HS MHS KFH
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg)	Housing	MKF MKC KC MKC HS KFH LC
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg)	Housing	MKF: MKC KC MKC HS MHS KFH: LC
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg)	Housing	MKF: MKC: KC0 MKC0 HS0 KFH: LC0 LC1 LC1
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg) 4.50" (115 mm)	Fluid	MKF: MKC: KC0 MKC0 HS0 KFH: LC0 LC1 LC1
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y: Element Change Clearance:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg) 4.50" (115 mm)	Fluid	MKF. MKC KC MKC HS MHS KFH. LC LC NOF30-
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y: Element Change Clearance: Type Fluid Appropriate troleum Based Fluids All E Media High Water Content All Z-Media	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg) 4.50" (115 mm)	Fluid	MKF: MKC KC MKC HS MHS KFH: LC LC LC NOF30-0
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y: Element Change Clearance:	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg) 4.50" (115 mm)	Fluid	MKF MKC KC MKC HS MHS KFH LC LC LC NOF30-0 FOF60-0
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of YF30-4Y: Weight of YF30-8Y: Element Change Clearance: Type Fluid Appropriate troleum Based Fluids All E Media High Water Content All Z-Media Invert Emulsions 10 and 25 p	3000 psi (210 bar) 10,000 psi (690 bar), per NFPA T2.6.1 1800 psi (124 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Aluminum 3.75 lbs. (1.70 kg) 4.25 lbs. (1.93 kg) 4.50" (115 mm)	Fluid	MKF5 MKC5 KC6 MKC6 HS6

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		atio Per ISO 4572/NF particle counter (APC) calil		o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
4YZ1/8YZ1	<1.0	<1.0	<1.0	<4.0	4.2
4YZ3/8YZ3	<1.0	<1.0	<2.0	<4.0	4.8
4YZ5/8YZ5	2.5	3.0	4.0	4.8	6.3
4YZ10/8YZ10	7.4	8.2	10.0	8.0	10.0
4YZ25/8YZ25	18.0	20.0	22.5	19.0	24.0
4YZX5/8YZX5	2.5	3.0	4.0	5.6	7.2
4YZX10/8YZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)
4YZ1	6.3	8YZ1	12.1
4YZ3	5.1	8YZ3	9.9
4YZ5	6.4	8YZ5	12.4
4YZ10	5.4	8YZ10	10.5
4YZ25	4.9	8YZ25	9.4
4YZX5	4.3	8YZX5	8.9
4YZX10	4.3	8YZX10	8.9

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In Element Nominal Dimensions:

4Y: 1.77" (45 mm) O.D. x 4.50" (114 mm) long 8Y: 1.77" (45 mm) O.D. x 8.21" (209 mm) long

Top-Ported Pressure Filter

YF30

 $\Delta P_{\rm houring}$ YF30 $\Delta P_{\rm houring}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{f})$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for YF304YZ10WSDRD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the YF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 4YZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta P_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_{f} = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta P_{\text{max}} = 3 \text{ psi} + (8 \text{ psi} * 1.3) = 13.4 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .21 \text{ bar} + (.55 \text{ bar} * 1.3) = .93 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note:

 $\begin{array}{ll} \mbox{If your element is not graphed, use the following equation:} \\ \Delta P_{\mbox{element}} = \mbox{Flow Rate x } \Delta P_{\mbox{f}} \mbox{Plug} \\ \mbox{this variable into the overall pressure drop equation.} \\ \mbox{Ele.} \quad \Delta P \quad \mbox{Ele.} \quad \Delta P \end{array}$

Ele.	ΔP	Ele.	ΔΡ
4YZX5	1.65	8YZX5	0.92
4YZX10	0.09	8YZX10	0.63

YF30 Top-ported Pressure Filter

Filter Model Number Selection	How to Build BOX 1 BO YF30 - BOX 1 BO YF30 -	X 2 BOX 3	BOX 4 BOX 4 BOX 4 BOX 4 W	BOX 5 BOX BOX 5 BOX BOX 5 BOX	6 BOX 7 BOX 8	4YZ10WSDRD5	
	BOX 1	BOX 2			BOX 3	BOX 4	BOX 5
	Filter Series L	Element ength (in)		Elemei	nt Size and Media	Seal Material	Inlet Port
		4	YZ1	= Y size 1 μ Exc	ellement [®] Z-Media [®] (synthetic)	Omit = Buna N	S = SAE-12
	YF30	8			ellement [®] Z-Media [®] (synthetic)	V = Viton°	O = Subplate
			YZ5	= Y size 5 μ Exc	ellement [®] Z-Media [®] (synthetic)	W = Buna N,	(contact factory)
	YFN30 (Non-by-		YZ10	= Y size 10 μ Ex	cellement [®] Z-Media [®] (synthetic)	Anodized	lactory)
	passing: requires ZX				cellement [®] Z-Media [®] (synthetic)	Aluminum parts	
	high collapse elements)		YZX5		ellement [®] Z-Media [®]	pures	
			V7V10		e center tube) cellement [®] Z-Media [®]		
			12/10		e center tube)		
		50			DOVA		
	BOX 6 Dirt Alarm [®]	BO			BOX 8		
	Location	Bowl	Drain		Dirt Alarm [®] C	ptions	
	Omit = Side of filter		No drain	Viewel	Omit = None		
	head	DR =		Visual	D5 = Visual pop-up		
	T = Top of			Visual with Thermal	D8 = Visual w/ therr	nal lockout	
	filter head			Lockout			
					MS5 = Electrical w/ 12	in. 18 gauge 4-conductor	r cable
					MS5LC = Low current M	\$5	
					MS10 = Electrical w/ D (male end only		
					MS10LC = Low current M		
				Electrical	MS11 = Electrical w/ 12		
					$MS12 = \frac{Electrical W/S}{(male end only)}$	oin Brad Harrison connect)	or
					MS12LC = Low current M	512	
						eather-packed sealed con	nector
					MS16LC = Low current M		
					MS17LC = Electrical w/ 4 MS5T = MS5 (see abov		nnector
					MS5LCT = Low current M	,	
				_	MS10T = MS10 (see abo	ve) w/ thermal lockout	
				Electrical with	MS10LCT = Low current M		
				Thermal	MS12T = MS12 (see abo	,	
NOTES:				Lockout	MS12LCT = Low current M MS16T = MS16 (see abo		
Box 2. Replacement element part					MS16LCT = Low current M		
numbers are combination of Boxes 2,3, and 4.					MS17LCT = Low current M	517T	
Example 4YZ10V				Electrical	MS13DC = Supplied w/ th		
Box 4. For options V and W, all aluminum parts are				Visual	$MS14DC = \frac{Supplied w/5}{(male end)}$	oin Brad Harrison connecto	or & light
anodized. Viton [,] is a registered trademark of				Electrical	MS13DCT = MS13 (see abo w/ thermal loc	ve), direct current,	
DuPont Dow Elastomers.				Visual	W/ thermal loc MS13DCLCT = Low current M		
Box 8. Standard indicator setting				with Thermal	MS14DCT _ MS14 (see abo	ve), direct current,	
for non-bypassing model is 50 psi unless otherwise				Lockout	WST4DCT = w/ thermal loc		

Non-Bypassing Pressure Filter CFX30

			INF30
	Features and Benefits Top-ported non-bypassing pressure filter 	30 gpm <u>115 L/mir</u> 3000 psi	NFS30 YF30 CFX30
	Unique valve eliminates need for high	210 bar	PLD
	collapse elements, valve begins to close off flow at 50 psi: Differential Pressure	210 001	CF40
	and fully closes off flow by 80 psi: DP. This ensures that no un-filtered flow		DF40
	is allowed down stream to critical components.		PF40
	Offered in pipe, SAE straight thread		
	 and ISO 228 porting Integral inlet and outlet female test points option available 		RF60
			CF60
			CTF60
			VF60
			LW60
Model No. of filter in photograph is CFX301CC	C10SD5.		KF30
Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	3000 psi (210 bar)	Housing	KF50
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1	Specifications	TF50
Rated Fatigue Pressure:	1800 psi (125 bar), per NFPA T2.6.1-2005		KC50
Temp. Range: Bypass Setting:	-20°F to 225°F (-29°C to 107°C) Non-Bypassing		MKF50
Porting Head:	Aluminum		MKC50
Element Case: Weight of CFX30-1CC:	Steel 19.5 lbs. (8.9 kg)		
Element Change Clearance:	4.00" (100 mm)		KC65
-			MKC65
Type Fluid Appropriate Sc		Fluid Compatibility	HS60
High Water Content All Z-Media an	lulose), Z-Media [*] and ASP [*] Media (synthetic) d ASP [*] media (synthetic)	compationity	MHS60
5	Media [°] and 10 μ ASP [°] media (synthetic)		KFH50
Water Glycols 3, 5, 10 and 25	μ Z-Media $^{\circ}$ and 3, 5 and 10 μ ASP $^{\circ}$ Media (synthetic)		
· ·	d ASP [*] media (synthetic) with H (EPR) seal designation		LC60
	μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless n in element, and light oil coating on housing exterior)		LC35
Schroeder's CFX30 series is a non-bypassing filte	r that incorporates the use of a unique pressure drop limiting valve	Unique	LI50
	e element below the element's collapse pressure rating. As the element ross the element and, therefore, across the spool of the valve. At 50 psi,	Non-	LC50
the spool begins to move, restricting flow as needed to prevent the pressure drop	Pressure drop limiting valve	Bypassing	NOF30-05
from increasing further and compromising	Filtered outlet flow	Filtration: A Better Way	
element integrity. This design allows the CFX30 filters to safely use the lower cost		That	NOF-50-760

Does Not

Require . High Crush

Elements

Non-Bypassing Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		Filtration Ratio Per IS 4572/NFPA T3.10.8.8 particle counter (APC) calib	per ISC	on Ratio) 16889 _{Ited per} ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\hat{B}_{x}^{(c)} \geq 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
CCZ1	57
CCZ3	58
CCZ5	63
CCZ10	62
CCZ25	63

Element Collapse Rating: 150 psid (10 bar) for standard elements Flow Direction: Outside In Element Nominal CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long Dimensions:

Non-Bypassing Pressure Filter CFX30

 $\Delta P_{\text{housing}}$ CFX30 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

15

Flow Rate [GPM]

20

25

30

35

Pressure Drop Information Based on Flow Rate and Viscosity

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 15 gpm (57 L/min) for CFX301CZ5SD5 using 100 SUS (21.3 cSt) fluid.

0

5

10

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the CFX30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the CZ5 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 ΔP_{filter} = .34 psi + (.21 psi * .67) = .48 psi <u>OR</u>

 $\Delta P_{\text{filter}} = .34 \text{ bar} + (.21 \text{ bar} * .67) = .48 \text{ bar}$

Note: If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_{f} Plug this variable into the overall pressure drop equation.

Ele.	ΔΡ
CC3	0.22
CC10	0.13
CC25	0.03
CAS3/CCAS3	0.20
CAS5/CCAS5	0.19
CAS10/CCAS10	0.35

CFX30 Non-Bypassing Pressure Filter

Filter	How to Build a Valid Mo	odel Number	for a Schroeder CFX30:	
Model Number	BOX 1 BOX 2 BOX 3 CFX30	BOX 4 BOX 5	BOX 6 BOX 7 BOX 8	
Selection				
	BOX 1 BOX 2 BOX 3 CFX30 - CC - Z	BOX 4 BOX 5		30CCZ5SD5
	BOX 1	BOX 2	BOX 3	
		& Size of nents	Media Type	
	CFX30 1 C = Si	ngle Length	Omit = E Media (cellulose)	
	CT X 30 CC = D	ouble Length	Z = Excellement [°] Z-Media [°] (syn	
			AS = Anti-Stat Media (synthetic)	
			M = Media (reusable metal mes	511/
	BOX 4		BOX 5	BOX 6
	Micron Rati	ng	Seal Material	Porting
	1 = 1 Micron (Z-Media [®])	Omit = Buna N	S = SAE-20
	3 = 3 Micron (E, Z, AS N	,	V = Viton [°]	P = 1¼" NPTF
	5 = 5 Micron (Z, AS Me 10 = 10 Micron (E, M, Z, A		W = Buna N, Anodized	$B = ISO 228 G - 1\frac{1}{4}$ "
	25 = 25 Micron (E & Z-Me		Aluminum parts	
			H = EPR	
			H.5 = Skydrol® compatibility	
	BOX 7		BOX 8	
	Options		Dirt Alarm [®] Opt	ions
	Omit = None		Omit = None	
	L = Two ¼" NPTF inlet and outlet female	Visual Visual with	D5 = Visual pop-up	
	test ports	Thermal Lockout	D8 = Visual w/ thermal lo	ckout
	U = Schroeder Check 7/16"-20 UNF Test	LOCKOUL	MS5 = Electrical w/ 12 in. 1	8 gauge 4-conductor cable
	Point installation		MS5LC = Low current MS5 MS10 = Electrical w/ DIN cor	nnector (male end only)
	in cap (upstream)		MS10LC = Low current MS10	
		Electrical	MS11 = Electrical w/ 12 ft. 4- Electrical w/ 5 pin Br	conductor wire ad Harrison connector
NOTES:			(male end only)	
Box 2. Replacement element part			MS12LC = Low current MS12 MS16 = Electrical w/ weathe	r-packed sealed connector
numbers are identical to contents			MS16LC = Low current MS16	
of Boxes 2, 3, 4 and 5. E media (cellulose) elements			MS17LC = Electrical w/ 4 pin Br MS5T = MS5 (see above) w/	
are only available with Buna N seals.			MS5LCT = Low current MS5T MS10T = MS10 (see above) w	/thormal lockout
Box 5. For options H, V, W, and		Electrical	MS10LCT = Low current MS10T	
H.5, all aluminum parts are anodized. H.5 seal		with Thermal	MS12T = MS12 (see above) w	/ thermal lockout
designation includes the following: EPR seals, stainless		Lockout	MS12LCT = Low current MS12T MS16T = MS16 (see above) w	/ thermal lockout
steel wire mesh on elements, and light			MS16LCT = Low current MS16T MS17LCT = Low current MS17T	
oil coating on housing		Electrical	MS17LCT = Low current MS171 MS13DC = Supplied w/ threade	ed connector & light
exterior. Viton [®] is a registered trademark of DuPont Dow		Visual	MS14DC = Supplied w/ 5 pin Bra MS13DCT = MS13 (see above), d	d Harrison connector & light (male end)
Elastomers. Skydrol° is a registered trade-		Electrical Visual with	MS13DCLCT = Low current MS13DC	
mark of Solutia Inc.		Thermal Lockout	MS14DCT = MS14 (see above), d MS14DCLCT = Low current MS14D	

Features and Benefits

- Durable carbon steel construction
- Filter housings are designed to withstand pressure surges as well as high static pressure loads
- Screw-in bowl allows the filter element to be easily removed for replacement or cleaning
- Standard model supplied with drain plugs
- Standard Viton[®] seal on filter housing
- Filter contains an integrated equalization valve
- Pressure is equalized between filters by raising the change-over lever prior to switching it to the relevant filter side

100 gpm <u>380 L/min</u> 3000 psi 210 bar

Model No. of filter in photograph is PLD10DVZ3VF24.

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	3000 psi (207 bar)	Housing
Min. Yield Pressure:	10,600 psi (730 bar)	Specifications
Rated Fatigue Pressure:	3000 psi (207 bar)	
Temp. Range:	-22°F to 250°F (-30°C to 121°C)	
Bypass Setting:	102 psi (7 bar)	
Porting Head: Element Case:	Ductile Iron Steel	
Weight of PLD-10DV: Weight of PLD-16DV:	97 lbs. (43.9 kg) 100 lbs. (45.3 kg)	
Element Change Clearance:	10DV: 3.5" (89 mm) 16DV: 3.5" (89 mm)	

Type FluidAppropriate Schroeder MediaPetroleum Based FluidsAll Z-Media" (synthetic)Invert Emulsions10 and 25 µ Z-Media" (synthetic)Water Glycols3, 5, 10 and 25 µ Z-Media" (synthetic)

Fluid Compatibility

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

PL

D

		tio Per ISO 4572/NFP article counter (APC) calibr		per ISO 16889 ted per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}(c) \geq 200$	$\hat{B}_{x}(c) \geq 1000$
10/16DVZ1	<1.0	<1.0	<1.0	<4.0	4.2
10/16DVZ3	<1.0	<1.0	<2.0	<4.0	4.8
10/16DVZ5	2.5	3.0	4.0	4.8	6.3
10/16DVZ10	7.4	8.2	10.0	8.0	10.0
10/16DVZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
10DVZ1	57	16DVZ1	110	
10DVZ3	59	16DVZ3	114	
10DVZ5	64	16DVZ5	124	
10DVZ10	62	16DVZ10	112	
10DVZ25	63	16DVZ25	102	
	Element Collapse Rating:	290 psid (20 bar)		
	Flow Direction:	Outside In		
	Element Nominal Dimensions:	3.0" (75 mm) O.D. x 14.5" (370 mm) long		

PLD

Pressure

Drop Information

Based on

Flow Rate

and Viscosity

0

20

40

60

80

100

120

Exercise:

Determine ΔP_{mer} at 50 gpm (189 L/min) for PLD10DVZ1VF24VM using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nouting}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the PLD housing.

Use the element pressure curve to determine $\Delta P_{\text{stement}}$ at 50 gpm. In this case, $\Delta P_{\text{stement}}$ is 17.5 psi (1.2 bar) according to the graph for the 10DVZ1 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] | \Delta P_{\text{element}} = 17.5 \text{ psi} [1.2 \text{ bar}]$

 $V_{f} = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta P_{\text{mer}} = 8 \text{ psi} + (17.5 \text{ psi} * 1.3) = 30.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{mer}}} = .55 \text{ bar} + (1.2 \text{ bar} * 1.3) = 2.1 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_{\underline{f}}.$ Plug this variable into the overall pressure drop equation. Ele $\Delta P_{\text{element}} = \Delta P_{\text{elem}} \Delta$

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 16DVZ10

Ρ

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton is a registered trademark of DuPont Dow Elastomers.

Top-Ported Pressure FilterCF40/DF40

Model No. of filters in photograph and	<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Up to 45 gpm <u>170 L/mir</u> 4000 psi 275 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CTF60 VF60 LW60 KF30 KF50 TF50 KC50
Flow Rati	DF40 - 30 gpm (113 L/min) for 150 SUS (32 cSt) fluids	Filter Housing Specifications	MKF50 MKC50
	Max. Operating Pressure: 4000 psi (275 bar)		KC65
Min. Yield Pressu Rated Fatigue Pressu			
Temp. Ran			MKC65
Bypass Setti	Full Flow: 72 psi (5.0 bar)		HS60 MHS60
Porting He Element Ca	ng Head: Aluminum		
Weight of CF40/DF40- Weight of CF40/DF40-1			LC60
Element Change Clearar			LC35
	8.75" (219 mm) for CC elements		LI50
			LC50
Type Fluid Appro	priate Schroeder Media	Fluid	NOF30-05
	Aedia (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	NOF-50-760
-	Media" and ASP" Media (synthetic) d 25 μ Z-Media" (synthetic), 10 μ ASP" Media (synthetic)		FOF60-03
	0 and 25 µ Z-Media [*] (synthetic), and all ASP [*] Media (synthetic)		NMF30
	Nedia [*] and ASP [*] Media (synthetic) with H (EPR) seal designation		RMF60
desig	0 and 25 μ Z-Media (synthetic) and all ASP Media (synthetic) with H.5 seal nation (EPR seals and stainless steel wire mesh in element, and light oil coating using exterior)		14-CRZX10

CF40/DF40 Top-Ported Pressure Filter

Element Performance Information & Dirt Holding Capacity Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}^{(c)} \geq 200$	$\beta_x(c) \ge 1000$
CZ1/CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CZ3/CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CZ5/CCZ5	2.5	3.0	4.0	4.8	6.3
CZ10/CCZ10	7.4	8.2	10.0	8.0	10.0
CZ25/CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8
CCZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	
CZ1	25	CCZ1	57	
CZ3	26	CCZ3	58	
CZ5	30	CCZ5	63	
CZ10	28	CCZ10	62	
CZ25	28	CCZ25	63	
		CCZX3	26*	
			28*	
Element Collapse Rating: Flow Direction: Element Nominal Dimensions:		150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions		
		Outside In		
		C: 3.0" (75 mm) O.D. x 4.75" (120 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long		
			* Based on 100 psi terminal pressure	

Top-Ported Pressure Filter CF40/DF40

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{filter} at 25 gpm (94.6 L/min) for CF401CZ10SD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 25 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the CF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 25 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.42 bar) according to the graph for the CZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4.5 \text{ psi} [.31 \text{ bar}] | \Delta P_{\text{element}} = 6 \text{ psi} [.42 \text{ bar}]$

 $V_{f} = 200 \text{ SUS} (42.6 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.3$ $\Delta P_{\text{filter}} = 4.5 \text{ psi} + (6 \text{ psi} * 1.3) = 12.3 \text{ psi}$

<u>OR</u> $\Delta P_{\text{filter}} = .31 \text{ bar} + (.42 \text{ bar} * 1.3) = .86 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{e} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP
C3	0.50	CC3	0.22
C10	0.19	CC10	0.13
C25	0.09	CC25	0.03
CAS3	0.50	CCAS3	0.20
CAS5	0.32	CCAS5	0.19
CAS10	0.25	CCAS10	0.10
		CCZX3	0.29
		CCZX10	0.26

CF40/DF40 Top-Ported Pressure Filter

SCHROEDER INDUSTRIES 72

Top-Ported Pressure Filter PF40

Hel No. of filter in photograph is PF409HZ10S	 Features and Benefits Top-ported pressure filter All steel housing offers unparalleled fatigue rating Available with non-bypass option with high collapse element Two bowl lengths provide optimal sizing for the application Offered in conventional sub-plate, SAE straight thread, and ISO 228 porting 	50 gpm <u>190 L/min</u> 4000 psi 275 bar	PLD CF40 DF40 PF40 RFS50 RF60 CF60 CF60 CTF60 VF60 LW60 KF30 KF50 TF50
		Eiltor	KC50 MKF50
Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	4000 psi (275 bar)	Housing	MKF50
Max. Operating Pressure: Min. Yield Pressure:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1		MKF50 MKC50 KC65
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005	Housing	MKF50 MKC50 KC65 MKC65
Max. Operating Pressure: Min. Yield Pressure:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1	Housing	MKF50 MKC50 KC65
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg)	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-9H:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg)	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-9H:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg)	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-9H:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg)	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-9H: Element Change Clearance:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)	Housing Specifications	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-9H:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)	Housing	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50 LC50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-5H: Element Change Clearance:	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm) oeder Media	Fluid	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50 LC50 NOF30-05
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Veight of PF40-5H: Weight of PF40-5H: Weight of PF40-9H: Element Case: Porting Head: Element Case: Mited Appropriate Schwart Petroleum Based Fluids All E Media (celud High Water Content Invert Emulsions 10 and 25 µ Z-Media	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm) accorder Media lose) and Z-Media* (synthetic) thetic) edia* (synthetic)	Fluid	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of PF40-5H: Weight of PF40-5H: Weight of PF40-9H: Element Change Clearance: Petroleum Based Fluids All E Media (celluid) High Water Content All Z-Media (spint) Source Sure Sure Sure Sure Sure Sure Sure Sur	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm) oeder Media lose) and Z-Media* (synthetic) thetic) dia* (synthetic) Z-Media* (synthetic)	Fluid	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50 LC50 NOF30-05
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Veight of PF40-5H: Weight of PF40-5H: Weight of PF40-9H: Element Case: Porting Head: Element Case: Mited Appropriate Schwart Petroleum Based Fluids All E Media (celud High Water Content Invert Emulsions 10 and 25 µ Z-Media	4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm) oeder Media lose) and Z-Media* (synthetic) thetic) dia* (synthetic) Z-Media* (synthetic)	Fluid	MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03

PF40

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		atio Per ISO 4572/NF particle counter (APC) calil		per ISO 16889 Ited per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
5HZ1/9HZ1	<1.0	<1.0	<1.0	<4.0	4.2
5HZ3/9HZ3	<1.0	<1.0	<2.0	<1.0	4.8
5HZ5/9HZ5	2.5	3.0	4.0	4.8	6.3
5HZ10/9HZ10	7.4	8.2	10.0	8.0	10.0
5HZ25/9HZ25	18.0	20.0	22.5	19.0	24.0
5HZX1/9HZX1	<1.0	<1.0	<1.0	<4.0	4.2
5HZX3/9HZX3	<1.0	<1.0	<2.0	<1.0	4.8
5HZX5/9HZX5	2.5	3.0	4.0	4.8	6.3
5HZX10/9HZX10	7.4	8.2	10.0	8.0	10.0
5HZX25/9HZX25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
5HZ1	26	9HZ1	51	5HZX1	14	9HZX1	29
5HZ3	28	9HZ3	42	5HZX3	14	9HZX3	29
5HZ5	39	9HZ5	59	5HZX5	15	9HZX5	31
5HZ10	31	9HZ10	47	5HZX10	15	9HZX10	31
5HZ25	32	9HZ25	48	5HZX25	16	9HZX25	33

3000 psid (210 bar) for high collapse elements

Flow Direction: Outside In

Element Collapse Rating: 150 psid (10 bar) for standard elements

Element Nominal Dimensions:

5H: 2.5" (100 mm) O.D. x 5.36" (136 mm) long 9H: 2.5" (100 mm) O.D. x 9.63" (244 mm) long

Element Performance Information & Dirt Holding Capacity

Top-Ported Pressure Filter

PF40

 $\Delta P_{\rm housing}$ PF40 $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

9HZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

Flow Rate [GPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 20 gpm (75.7 L/min) for PF405HZ3SD5S using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 20 gpm. In this case, $\Delta P_{\text{housing}}$ is 2.5 psi (.17 bar) on the graph for the PF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 20 gpm. In this case, $\Delta P_{\text{element}}$ is 15 psi (1 bar) according to the graph for the 5HZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_i) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2.5 \text{ psi} \text{ [.17 bar]} | \Delta P_{\text{element}} = 15 \text{ psi} \text{ [1 bar]}$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{filter}} = 2.5 \text{ psi} + (15 \text{ psi} * 1.1) = 19 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .17 \text{ bar} + (1 \text{ bar} * 1.1) = 1.3 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \, \Delta P_{\text{f}}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
5HZX3	1.17
5HZX10	0.50
5HZX25	0.27
9HZX3	0.62
9HZX10	0.26
9HZX25	0.14

Top-Ported Pressure Filter

Filter Model Number Selection	BOX 1 BOX 2 BO PF40	PF40 -				
	BOX 1 BOX 2 BOX 3					
	Filter Eleme Series Length		Element	Part Number		
	PF40 5 9 PFN40 (Non-bypassing: requires ZX high collapse elements)	HZ1 = H s HZ3 = H s HZ5 = H s HZ10 = H s HZ25 = H s HZX3 = H s HZX10 = H s	 HZ1 = H size 1 μ Excellement[*] Z-Media[*] (synthetic) HZ3 = H size 3 μ Excellement[*] Z-Media[*] (synthetic) HZ5 = H size 5 μ Excellement[*] Z-Media[*] (synthetic) HZ10 = H size 10 μ Excellement[*] Z-Media[*] (synthetic) HZ25 = H size 25 μ Excellement[*] Z-Media[*] (high collapse center tube) HZX10 = H size 10 μ Excellement[*] Z-Media[*] (high collapse center tube) HZX25 = H size 25 μ Excellement[*] Z-Media[*] (high collapse center tube) HZX25 = H size 25 μ Excellement[*] Z-Media[*] (high collapse center tube) 			
	BOX 4	BOX 5	BOX 6		BOX 7	
	Seal Material	Porting	Bypass	-	Test Points	
	Omit = Buna N H = EPR V = Viton° H.5 = Skydrol° compatibility	S = SAE-16 B = ISO 228 G-1"	Omit = 40 PSI bypass X = Blocked Bypass 50 = 50 PSI bypass (Omit box 6 if PFN40 is used)	test port U = Schroed	NPTF inlet & outlet female s er Check ‰"-20 UNF test stallation in head (upstream)	
		BOX	8		BOX 9	
		Dirt Alarm [®]			Dirt Alarm [®] Location	
		Omit = None			Omit - Top mounted	

NOTES:	
--------	--

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 5HZ10V

PF40

- Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[°] is a registered trademark of DuPont Dow Elastomers. Skydrol[°] is a registered trademark of Solutia Inc.
- Box 5. B porting option supplied with metric mounting holes.
- Box 6. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 8. Standard indicator setting for non-bypassing model is 50 psi unless otherwise noted.

	Dirt Alarm [®] Options	Dirt Alarm [®] Location
	Omit = None	Omit = Top mounted
Visual	D5 = Visual pop-up	S = Side mounted
Visual with	D8 = Visual w/ thermal lockout	5 – Side modified
Thermal		
Lockout		BOX 10
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	Pour Drain Ontions
	MS5LC = Low current MS5	Bowl Drain Options
	MS10 = Electrical w/ DIN connector (male end only)	Omit = None
	MS10LC = Low current MS10	
Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire	DR = Drain 7/16"-20
Liectrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	
	MS12LC = Low current MS12	
	MS16 = Electrical w/ weather-packed sealed connector	
	MS16LC = Low current MS16	
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
	MS5T = MS5 (see above) w/ thermal lockout	
	MS5LCT = Low current MS5T	
Electrical	MS10T = MS10 (see above) w/ thermal lockout	
with	MS10LCT = Low current MS10T	
Thermal	MS12T = MS12 (see above) w/ thermal lockout	
Lockout	MS12LCT = Low current MS12T	
LOCKOUL	MS16T = MS16 (see above) w/ thermal lockout	
	MS16LCT = Low current MS16T	
	MS17LCT = Low current MS17T	
Electrical	MS13DC = Supplied w/ threaded connector & light	
Visual	MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)	
Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
Visual with	MS13DCLCT = Low current MS13DCT	
Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
Lockout	MS14DCLCT = Low current MS14DCT	

76 SCHROEDER INDUSTRIES

Manifold Mounted Pressure Filter RFS50

NoteNo	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	30 gpm <u>115 L/mir</u> 5000 psi 345 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF50 RF60 CF60 CF60 CF60 CF60 VF60 LW60 KF30 KF50 TF50 KC50 MKF50		
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range:	15,500 psi (1070 bar), per NFPA T2.6.1 Contact Factory -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar)	Filter Housing Specifications	MKC50 KC65 MKC65 HS60 MHS60		
Porting Head: Element Case: Weight of RFS50-8R: Element Change Clearance:	Steel 16.50 lbs. (7.5 kg)		KFH50 LC60 LC35		
Time Fluid Americanists Col	roadar Madia	Fluid	LI50 LC50 NOF30-05		
Type Fluid Appropriate Sch		Fluid			
Petroleum Based Fluids All E Media (cell		Compatibility	NOF-50-760		
High Water Content All Z-Media [®] (syr			FOF60-03		
	Invert Emulsions 10 and 25 μ Z-Media [*] (synthetic)				
	Water Glycols 3, 5, 10 and 25 µ Z-Media [*] (synthetic)				
	thetic) with H (EPR) seal designation		RMF60		
	Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless in element, and light oil coating on housing exterior)				
steer wife mesh	in element, and light on coating on nousing exterior)		14-CRZX10		

RFS50 Manifold Mounted Pressure Filter

Element Performance Information & Dirt Holding Capacity

			per ISO 16889 ted per ISO 11171	
$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\hat{B}_{x}^{(c)} \geq 1000$
<1.0	<1.0	<1.0	<4.0	4.2
<1.0	<1.0	<2.0	<4.0	4.8
2.5	3.0	4.0	4.8	6.3
7.4	8.2	10.0	8.0	10.0
18.0	20.0	22.5	19.0	24.0
	Using automated ß ≥ 75 <1.0 <1.0 2.5 7.4	Using automated particle counter (APC) calib $\beta_i \geq 75$ $\beta_i \geq 100$ <1.0	<1.0 <1.0 <1.0 <1.0	Using automated particle counter (APC) calibrated per ISO 4402 Using APC calibrated per ISO 4402 $\beta_{} \geq 75$ $\beta_{.} \geq 100$ $\beta_{.} \geq 200$ $\beta_{.} (c) \geq 200$ <1.0 <1.0 <1.0 <4.0 <1.0 <1.0 <2.0 <4.0 2.5 3.0 4.0 <4.8 7.4 8.2 10.0 <8.0

Element	DHC (gm)	
8RZ1	33	
8RZ3	26	
8RZ5	51	
8RZ10	29	
8RZ25	30	
	Element Collapse Rating:	150 psid (10 bar) for standard elements
	Flow Direction:	Outside In
Ele	ment Nominal Dimensions:	2.18" (55 mm) O.D. x 8.15" (206 mm) long

Manifold Mounted Pressure Filter

$\Delta P_{\rm housing}$ RFS50 $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

RFS5

$$\Delta P_{\text{fiber}} = \Delta P_{\text{bouring}} + (\Delta P_{\text{alergent}} * V_{\epsilon})$$

Exercise:

Determine ΔP_{mer} at 15 gpm (57 L/min) for RFS508RZ10VOD5 using 200 SUS (42.6 cSt) fluid.

L

Use the housing pressure curve to determine $\Delta P_{\text{nonling}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RFS50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] | \Delta P_{\text{element}} = 5 \text{ psi } [.34 \text{ bar}]$

 $V_{f} = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta P_{\text{max}} = 5 \text{ psi} + (5 \text{ psi} * 1.3) = 11.5 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .34 \text{ bar} + (.34 \text{ bar} * 1.3) = .78 \text{ bar}$ Note:

If your element is not following equation: $\Delta P_{element} = Flow Rate$ this variable into the drop equation.	$x \Delta P_{f}$ Plug
Ele.	ΔP
000	0.25

ΔP
0.35
0.30

RFS50 Manifold Mounted Pressure Filter

Filter Model Number Selection	How to Build a Valid Model Nu BOX 1 BOX 2 BOX 3 BOX RFS50	
Selection	BOX 1 BOX 2 BOX 3 BOX RFS50 - 8 - RZ10 - V	
	BOX 1 BOX 2	BOX 3
	Filter Element Series Length (in)	Element Size and Media
	8	R3 = R size 3 µ E media (cellulose)
	RFS50	R10 = R size 10 μ E media (cellulose) RZ1 = R size 1 μ Excellement [*] Z-Media [*] (synthetic)
	RFSN50	$RZ3 = R size 3 \mu$ Excellement [*] Z-Media [*] (synthetic)
		RZ5 = R size 5 μ Excellement [*] Z-Media [*] (synthetic)
	BOX 4 BOX 5	RZ10 = R size 10 μ Excellement [*] Z-Media [*] (synthetic) RZ25 = R size 25 μ Excellement [*] Z-Media [*] (synthetic)
		RZX1 = R size 1 µ Excellement [®] Z-Media [®] (high collapse center tube)
	Seal Material Inlet Port	RZX3 = R size 3 μ Excellement [®] Z-Media [®] (high collapse center tube)
	Omit = Buna N O = Manifold mountin	
		$RZX10 = R size 10 \mu Excellement* Z-Media* (high collapse center tube)RZX25 = R size 25 \mu Excellement* Z-Media* (high collapse center tube)$
	V = Viton°	
	BOX 6	BOX 7
	Options	Test Points
	Omit = 40 PSI Bypass	L = Two 1/4" NPTF inlet and outlet female test ports
	X = Blocked bypass 50 = 50 psi bypass setting	U = Schroeder Check 7/16"-20 UNF Test Point installation in head (upstream)
	(Omit Box 6 if RFSN50 is used)	
		BOX 8
	C	Dirt Alarm [®] Options
	Omit = None	
	Visual D5 = Visual Visual with D8 = Visual	al pop-up al w/ thermal lockout
	Thermal Lockout	
		rical w/ 12 in. 18 gauge 4-conductor cable
	MS5LC = Low (MS10 = Elect	current MS5 rical w/ DIN connector (male end only)
	MS10LC = Low of	
TES:	Electrical	rical w/ 12 ft. 4-conductor wire rical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC = Low	current MS12
x 2. Replacement element part	MS16 = Elect MS16LC = Low	rical w/ weather-packed sealed connector
numbers are a combination	MS17LC = Elect	rical w/ 4 pin Brad Harrison male connector
2, 3, and 4.	MS5T = MS5 MS5LCT = Low	(see above) w/ thermal lockout
x 3. Example: 8RZ1V	MS10T = MS10	0 (see above) w/ thermal lockout
synthetic media elements are only available with Viton seals.	Electrical MS10LCT = Low of with MS12T = MS12T	current MS10T 2 (see above) w/ thermal lockout
	Thermal MS12LCT = Low of	
4. Viton [°] is a registered trademark of DuPont Dow		6 (see above) w/ thermal lockout
Elastomers.	MS16LCT = Low of MS17LCT = Low of MS17LC	
x 5. For option O, O-rings	Electrical MS13DC = Supp	lied w/ threaded connector & light
included, fastening hardware not included.	Visual MS14DC= Supp	olied w/ 5 pin Brad Harrison connector & light e end)
x 6. When X is paired with a		3 (see above), direct current, w/ thermal lockout
standard filter series, a standard bushing and spring	Visual MS13DCLCT = Low of	
standard bushing and spring plate will be used	with Thermal MS14DCT = MS14	4 (see above), direct current, w/ thermal lockout

80 SCHROEDER INDUSTRIES

	Top-Ported Pressure Filter	RF60	NF30 NFS30
Wodel No. of filter in photograph i	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	30 gpm <u>115 L/mir</u> 6000 psi 415 bar	YF30
			MKF50
Flow Rating	g: Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	MKC50
Max. Operating Pressure	· ·	Housing	KC65
	e: 18,000 psi (1241 bar), per NFPA T2.6.1	Specifications	
	e: 2300 psi (159 bar), per NFPA T2.6.1-2005		MKC65
	e: -20°F to 225°F (-29°C to 107°C) g: Cracking: 40 psi (2.8 bar)		HS60
Dypass Setting	Full Flow: 56 psi (3.9 bar)		MHS60
Porting Head	Non-bypassing model has a blocked bypass.		KFH50
Element Case			
-	R: 15.75 lbs. (7.2 kg)		LC60
Element Change Clearance	e: 3.0" (75 mm)		LC35
			LI50
			LC50
			NOF30-05
	ropriate Schroeder Media	Fluid	
	-Media (cellulose) and Z-Media [*] (synthetic)	Compatibility	NOF-50-760
High Water Content All Z	nd 25 μ Z-Media [*] (synthetic)		FOF60-03
	10 and 25 μ Z-Media [®] (synthetic)		NMF30
Phosphate Esters All Z	Z-Media [®] (synthetic) with H (EPR) seal designation		RMF60
	10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless I wire mesh in element, and light oil coating on housing exterior)		
	·eeenen, and ign of county of flousing exercity		14-CRZX10

RF60

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8

Filtration Ratio per ISO 16889

Element Performance Information & Dirt Holding Capacity

		Using automated p	particle counter (APC) calib	prated per ISO 4402	Using APC calibra	ated per ISO 11171
Eleme	ent	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\hat{B}_{x}(c) \geq 1000$
8RZ1		<1.0	<1.0	<1.0	<4.0	4.2
8RZ3		<1.0	<1.0	<2.0	<4.0	4.8
8RZ5		2.5	3.0	4.0	4.8	6.3
8RZ1	0	7.4	8.2	10.0	8.0	10.0
8RZ2	5	18.0	20.0	22.5	19.0	24.0
8RZX	3	<1.0	<1.0	<2.0	4.7	5.8
8RZX	10	7.4	8.2	10.0	8.0	9.8
					·	
Eleme	ent	DHC (gm)				
8RZ1		33				
8RZ3		26				
8RZ5		51				
8RZ1	0	29				
8RZ2	5	30				
8RZX	3	C/F				
8RZX	10	C/F				
	Elemei	nt Collapse Rating:		or standard element:) for high collapse (Z		
		Flow Direction:	Outside In			
	Element No	minal Dimensions:	2.18" (55 mm) O.D.	x 8.15" (206 mm) lo	ng	
00 SCU						
82 SCH	IROEDER IND	USIRIES				

Top-Ported Pressure Filter

$\Delta P_{\text{housing}}$ RF60 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

RF6

$$\Delta P_{\text{filter}} = \Delta P_{\text{burging}} + (\Delta P_{\text{alement}} * V_{\text{c}})$$

Exercise:

Determine ΔP_{mer} at 15 gpm (57 L/min) for RF608RZ10VPD5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta P_{\text{element}} = 5 \text{ psi } [.34 \text{ bar}]$

 $V_{f} = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ $\Delta P_{\text{\tiny RBer}} = 5 \text{ psi} + (5 \text{ psi} * .67) = 8.3 \text{ psi}$ \underline{OR}

 $\Delta P_{\text{filter}} = .34 \text{ bar} + (.34 \text{ bar} * .67) = .57 \text{ bar}$

Note: If your element is not graphed, use the following equation:

following equation: $\Delta P_{\text{eternet}} = \text{Flow Rate x } \Delta P_{\text{f}} \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
8R3	0.35
8R10	0.30
8RZX3	C/F
8RZX10	C/F

RF60 Top-Ported Pressure Filter

Filter Model Number Selection	BOX 1 BOX 2 BOX RF60	3 BOX 4	BOX 5 BOX 6 BOX 7 BOX 8			
	BOX 1 BOX 2 BOX RF60 - 8 - RZ1		$\frac{BOX 5}{P} - \underbrace{BOX 6}_{P} - \underbrace{BOX 7}_{P} - \underbrace{BOX 7}_{P} - \underbrace{D5}_{P} = RF608RZ10V$	PD5		
	BOX 1 BOX 2		BOX 3	BOX 4		
	Filter Element Series Length (in	۵. ا	Element Size and Media	Seal Material		
	RF60 ⁸ RFN60	R3 R10 RZ1	 = R size 3 μ E media (cellulose) = R size 10 μ E media (cellulose) = R size 1 μ Excellement[*] Z-Media[*] (synthetic) = R size 3 μ Excellement[*] Z-Media[*] (synthetic) 	Omit = Buna N H = EPR V = Viton°		
	(Non-bypassing: requires ZX high collapse elements)	RZ5 RZ10 RZ25	 = R size 5 μ Excellement[*] Z-Media[*] (synthetic) = R size 10 μ Excellement[*] Z-Media[*] (synthetic) = R size 25 μ Excellement[*] Z-Media[*] (synthetic) = R size 1 μ Excellement[*] Z-Media[*] 			
		RZX3 RZX5	 (high collapse center tube) = R size 3 μ Excellement[*] Z-Media[*] (high collapse center tube) = R size 5 μ Excellement[*] Z-Media[*] (high collapse center tube) 			
			 R size 10 μ Excellement[*] Z-Media[*] (high collapse center tube) R size 25 μ Excellement[*] Z-Media[*] (high collapse center tube) 			
	BOX 5	BOX 8				
	Inlet Port		Dirt Alarm [®] Options			
	P = 1" NPTF) (f a v a 1	Omit = None			
	S = SAE-16 F = 1" SAE 4-bolt flange Code 62	Visual Visual with Thermal Lockout	D5 = Visual pop-up D8 = Visual w/ thermal lockout			
	B = ISO 228 G-1" BOX 6		MS5 = Electrical w/ 12 in. 18 gauge 4-cond MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male e MS10LC = Low current MS10	end only)		
	Bypass Omit = 40 PSI Bypass	Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison conr MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealer	nector (male end only)		
	X = Blocked bypass		MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison ma			
blacement element part mbers are a combination Boxes and 4.	50 = 50 psi bypass setting (Omit Box 6 if RFN60 is used)	Electrical	MS5T = MS5 (see above) w/ thermal lockou MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal locko	t		
mple: 8RZ1V thetic media elements only available with Viton ls.	BOX 7 Test Points	with Thermal Lockout	MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal locko MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal locko			
on [°] is a registered demark of DuPont Dow stomers.	L = Two ¼" NPTF inlet and	Electrical	MS16LCT = Low current MS16T MS17LCT = Low current MS17T MS13DC = Supplied w/ threaded connector &	light		
oorting option supplied h metric mounting holes.	outlet female test ports	Visual	MS14DC = Supplied w/ 5 pin Brad Harrison co (male end)	nnector & light		
hen X is paired with a ndard filter series, a ndard bushing and spring te will be used.	U = Schroeder Check 7/16"-20 UNF Test Point installation in	Electrical Visual with Thermal	MS13DCT = MS13 (see above), direct current, w MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w			
andard indicator setting non-bypassing model 50 psi unless otherwise	head (upstream)	Lockout	MS14DCLCT = Low current MS14DCT			

NOTES:

Box 2. R n oi 2, E: s) ai se

- Box 4. Vi tra El
- Box 5. B W
- Box 6. W st st pl
- Box 8. St fo is 50 psi unless otherwise noted.

Top-Ported Pressure FilterCF60

Image: Note of the image: Note of t	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	50 gpm <u>190 L/min</u> 6000 psi 415 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF50 RF60 CTF60 CTF60 VF60 LW60 KF30 KF50 TF50 KC50 MKF50
Max. Operating Pressure:		Filter Housing	MKC50 KC65
	15,500 psi (1070 bar), per NFPA T2.6.1	Specifications	NUCCE
	4000 psi (276 bar), per NFPA T2.6.1-R1-2005		MKC65
	-20°F to 225°F (-29°C to 107°C)		HS60
	Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Non-bypassing model has a blocked bypass.		MHS60
Porting Head:			KFH50
Element Case: Weight of CF60-9C:			LC60
Element Change Clearance:	-		LC35
			LI50
			LC50
			NOF30-05
Type Fluid Appropriate So		Fluid Compatibility	
High Water Content All Z-Media (ce	ellulose), Z-Media" and ASP" Media (synthetic)	Compationity	NOF-50-760
	Media [*] (synthetic) and 10 µ ASP [*] Media (synthetic)		FOF60-03
	μ Z-Media [*] and all ASP [*] Media (synthetic)		NMF30
	nd ASP* Media (synthetic) with H (EPR) seal designation		RMF60
	μ Z-Media" and all ASP° Media (synthetic) with H.5 seal PR seals and stainless steel wire mesh in element, and light oil using exterior)		14-CRZX10

CF60 Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NF particle counter (APC) calib		per ISO 16889 Ited per ISO 11171	
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_x(c) \ge 200$	$\hat{B}_{x}(c) \geq 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8

Element	DHC (gm)	
CCZ1	57	
CCZ3	58	
CCZ5	63	
CCZ10	62	
CCZ25	63	
CCZX3	26*	
	Element Collapse Rating:	150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions
	Flow Direction:	Outside In
	Element Nominal Dimensions:	CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

Top-Ported Pressure Filter

$\Delta P_{\rm housing}$ CF60 $\Delta P_{\rm house}$ for fluids with sp gr (specific gravity) = 0.86:

 ΔP_{elemen}

Pressure Drop Information Based on Flow Rate and Viscosity

CF6C

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{mer} at 30 gpm (113.6 L/min) for CF601CCZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nouting}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.28 bar) on the graph for the CF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the CCZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4 \text{ psi } [.28 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$ $\Delta P_{\text{inter}} = 4 \text{ psi} + (3 \text{ psi} * 1.2) = 7.6 \text{ psi}$ OR

 ΔP_{fitter} = .28 bar + (.21 bar * 1.2) = .53 bar

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = Flow Rate x \Delta P_{f_c} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
CC3	0.22
CC10	0.13
CC25	0.03
CCAS3	0.20
CCAS5	0.19
CCAS10	0.10
CCZX3	0.29
CCZX10	0.26

CF60 Top-Ported Pressure Filter

Filter Model Number Selection	How to Build a Valid Mode BOX 1 BOX 2 BOX 3 CF60	BOX 4 BOX 5	5 BOX 6 BOX 7 BOX 8 BOX 9	
	CF60 – 1CC – Z –	10 -		01CCZ10SD5
	BOX 1 BOX 2		BOX 3	
	Filter Number			
	Series and Size of Elements		Media Type	
	CF60 1CC	Omit EM	edia (cellulose)	
		Z = E:	xcellement [°] Z-Media [°] (synthetic)	
	CFN60 (Non-bypassing:		cellement [®] Z- Media [®] (high collapse center tube)	
	requires ZX high collapse elements)	AS = A	nti-Stat Media (synthetic)	
	conapse elements)			
	BOX 4		BOX 5	BOX 6
	Micron Ratin	a	Seal	Porting
		9	Material Omit = Buna N	S = SAE-20
	1 = 1 Micron (Z media) 3 = 3 Micron (AS,E, Z ar	nd ZX media)	$V = Viton^{\circ}$	$P = 1\frac{1}{4}$ " NPTF
		d ZX media)	H = EPR	F = 1¼" SAE 4-bolt
		nd ZX media)	H.5 = Skydrol [®] compatibility	flange code 62
	25 = 25 Micron (E, Z and Z	ZX media)		B = ISO 228 G-1 ¹ / ₄ "
	BOX 7		BOX 8	
	Bypass		Dirt Alarm [®] Options	
	Omit = 40 PSI Bypass		Omit = None	
	X = Blocked Bypass	Visual	D5 = Visual pop-up	
	30 = 30 psi bypass setting	Visual with		
	50 = 50 psi bypass setting	Thermal	D8 = Visual w/ thermal lockout	
	(Omit box 7 if a CFN60 is selected)	Lockout		4. sou du atou solala
			MS5 = Electrical w/ 12 in. 18 gauge MS5LC = Low current MS5	4-conductor cable
t element part			MS10 = Electrical w/ DIN connector (male end only)
identical to			MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conduct	or wire
, 4 and 5. ulose) elements		Electrical	MS12 = Electrical W/12 H. +-ConductMS12 = Electrical W/ 5 pin Brad Harris	
lable with Buna			MS12LC = Low current MS12	
			MS16 = Electrical w/ weather-packed MS16LC = Low current MS16	sealed connector
gnation includes g: EPR seals,			MS17LC = Electrical w/ 4 pin Brad Harris	son male connector
el wire mesh , and light			MS5T = MS5 (see above) w/ thermal MS5L $CT = 1$ over surrout MS5L	ockout
n housing n° is a registered			MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ therma	lockout
f DuPont Dow		Electrical with	MS10LCT = Low current MS10T	
registered trade-		Thermal	MS12T = MS12 (see above) w/ therma MS12LCT = Low current MS12T	llockout
tia Inc.		Lockout	MS12LCT = LOW current MS12T MS16T = MS16 (see above) w/ therma	lockout
tion supplied			MS16LCT = Low current MS16T	
nounting holes.		Electrical	MS17LCT = Low current MS17T MS13 = Supplied w/ threaded conne	ctor & light
aired with a er series, a		Visual	MS15 = Supplied W/ Threaded Conne MS14 = Supplied W/ 5 pin Brad Harriso	
shing and		Electrical	MS13DCT = MS13 (see above), direct curr	
will be used.		Visual with	MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct curr	ent w/thermal lockout
licator setting assing model ess		Thermal Lockout	MS14DCLCT = Low current MS14DCT	ent, wy thermal lockout
ecified.				

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. E media (cellulose) element are only available with Buna N seals.
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric mounting holes
- Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used
- Box 8. Standard indicator setting for non-bypassing model is 50 psi unless otherwise specified.

Top-Ported Pressure FilterCTF60

Image: constraint of the second sec	 Fratures and Benefits Top-ported high pressure filter High cyclic fatigue performance (b000 psi) Available with non-bypass option with high collapse element Offered in pipe, SAE straight thread, flange and ISO 228 porting Thread on bowl with optional drain plug for easy element service 	75 gpm 284 L/mir 6000 psi 415 bar	PLD CF40 DF40 PF40 RFS50 RF60 CF60 CF60 CF60 VF60 LW60 KF30 KF50 TF50 KC50
-	Up to 75 gpm (284 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pressure:		Housing Specifications	MKC50
	18,000 psi (1241 bar), per NFPA T2.6.1 6000 psi (415 bar), per NFPA T2.6.1-R1-2005	Specifications	KC65
-	(only with F20 4-bolt flange porting)		MKC65
	-20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar)		HS60
bypass setting.	Full Flow: 83 psi (5.7 bar)		MHS60
Porting Head:			KFH50
Element Case: Weight of CTF60-5CT:			LC60
CTF60-8CT:	29 lbs. (13.2 kg) 38 lbs. (17.3 kg)		
Element Change Clearance:			LC35
			LI50
			LC50
Type Fluid Appropriate S	chroeder Media	Fluid	NOF30-05
High Water Content All Z-Media [®] (s		Compatibility	NOF-50-760
Invert Emulsions 10 and 25 μ Z			FOF60-03
Water Glycols 3, 5, 10 and 25 Phosphate Esters All Z-Media" (s	μ Z-Media [*] (synthetic) synthetic) with H (EPR) seal designation		NMF30
i nosphate Esters All Z-ivieula (s			
			RMF60
			14-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio	per ISO 16889 ted per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
CTZ1/CTZX1	<1.0	<1.0	<1.0	<4.0	4.2
CTZ3/CTZX3	<1.0	<1.0	<2.0	<4.0	4.8
CTZ5/CTZX5	2.5	3.0	4.0	4.8	6.3
CTZ10/CTZX10	7.4	8.2	10.0	8.0	10.0
CTZ25/CTZX25	18.0	20.0	22.5	19.0	24.0

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
5CTZ1	19	8CTZ1	31	14CTZ1	66
5CTZ3	16	8CTZ3	27	14CTZ3	57
5CTZ5	18	8CTZ5	30	14CTZ5	64
5CTZ10	21	8CTZ10	34	14CTZ10	72
5CTZ25	17	8CTZ25	28	14CTZ25	60
5CTZX1	14	8CTZX1	24	14CTZX1	53
5CTZX3	11	8CTZX3	18	14CTZX3	41
5CTZX5	10	8CTZX5	17	14CTZX5	38
5CTZX10	12	8CTZX10	20	14CTZX10	44
5CTZX25	11	8CTZX25	18	14CTZX25	39

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: 3000 psid (210 bar) for high collapse (ZX) versions Outside In

Element Nominal Dimensions: 5CT: 2.64" (67 mm) O.D. x 4.88" (124 mm) long 8CT: 2.64" (67 mm) O.D. x 7.25" (184 mm) long 14CT: 2.64" (67 mm) O.D. x 14.38" (365 mm) long

Top-Ported Pressure Filter CTF60

 $\Delta P_{\text{housing}}$ CTF60 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine ΔP_{inter} at 50 gpm (189 L/min) for CTF608CTZ5S20D9 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the CTF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{sterment}}$ at 50 gpm. In this case, $\Delta P_{\text{sterment}}$ is 22 psi (1.5 bar) according to the graph for the 8CTZ5 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V₂) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 7 \text{ psi} [.48 \text{ bar}] | \Delta P_{\text{element}} = 22 \text{ psi} [1.5 \text{ bar}]$

V_c = 200 SUS (42.6 cSt) / 150 SUS (32 cSt) = 1.3

 $\Delta P_{\text{filter}} = 7 \text{ psi} + (22 \text{ psi} * 1.3) = 35.6 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .48 \text{ bar} + (1.5 \text{ bar} * 1.3) = 2.4 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{e} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
5CTZ1	1.87	5CTZX1	1.64	8CTZX1	1.00
5CTZ3	0.77	5CTZX3	0.96	8CTZX3	0.59
5CTZ5	0.72	5CTZX5	0.68	8CTZX5	0.41
5CTZ10	0.46	5CTZX10	0.46	8CTZX10	0.28
5CTZ25	0.19	5CTZX25	0.25	8CTZX25	0.15
14CTZX1	0.46	14CTZX3	0.27	14CTZX5	0.19
14CTZX10	0.13	14CTZX25	0.07		

CTF60 Top-Ported Pressure Filter

Filter Model Number Selection	Model Number Selection					
	CTF60 - 8 - CTZ5	$-\underbrace{520}_{-}\underbrace{520}_{-}\underbrace{-}_{-$	9			
	BOX 1 BOX 2	BOX 3	BOX 4			
	Filter Element Series Length (in.)	Element Part Number	Seal Material			
	CTF60 5	CTZ1 = 1 µ Excellement [*] Z-Media [*] (synthetic)	Omit = Buna N			
	8	CTZ3 = 3μ Excellement [*] Z-Media [*] (synthetic)	$V = Viton^{\circ}$			
	CTFN60 14	CTZ5 = 5 μ Excellement [*] Z-Media [*] (synthetic)	H = EPR			
	(Non-bypass- ing: requires ZX	$CTZ10 = 10 \mu Excellement^* Z-Media^* (synthetic)$				
	high collapse elements)	CTZ25 = 25 μ Excellement [*] Z-Media [*] (synthetic) CTZX1 = 1 μ Excellement [*] Z-Media [*] (high collapse center tube)				
	ciencita;	CTZX1 = 1 µ Excellement [*] Z-Media [*] (high collapse center tube) CTZX3 = 3 µ Excellement [*] Z-Media [*] (high collapse center tube)				
		$CTZX5 = 5 \mu Excellement2 Z-Media3 (high collapse center tube)$				
		$CTZX10 = 10 \mu Excellement^* Z-Media^*$ (high collapse center tube)				
		$CTZX25 = 25 \ \mu Excellement^{*} Z-Media^{*}$ (high collapse center tube)				
	BOX 5 Inlet Port	BOX 8 Dirt Alarm [®] Options				
	P20 = 1 ¹ / ₄ " NPTF	Omit= None				
	S20 = SAE-20	Visual D9 = Visual pop-up				
	F20 = $1\frac{1}{4}$ " SAE 4-bolt	MS5SS = Electrical w/ 12 in. 18 gauge 4-conductor cable				
	flange Code 62	MS5SSLC = Low current MS5				
	B20 = ISO 228 G-1 ¹ / ₄ "	MS10SS = Electrical w/ DIN connector (male end only) MS10SSLC = Low current MS10				
		MS11SS = Electrical w/ 12 ft. 4-conductor wire				
		MS12SS= Electrical w/ 5 pin Brad Harrison connect	ctor (male end only)			
	BOX 6	MS12SSLC = Low current MS12				
	Bypass	MS16SS = Electrical w/ weather-packed sealed co	nnector			
		MS16SSLC = Low current MS16				
	Omit = 50 PSI Bypass	MS17SSLC = Electrical w/ 4 pin Brad Harrison male o	onnector			
	(Omit Box 6 if a CTFN60 is selected)	MS5SST = MS5 (see above) w/ thermal lockout				
		MS5SSLCT = Low current MS5T MS10SST = MS10 (see above) w/ thermal lockout				
	BOX 7	Electrical MS10SSLCT = Low current MS10T				
	Options	with MS12SST = MS12 (see above) w/ thermal lockout				
	UU Series 1215	Thermal Lockout MS12SSLCT = Low current MS12T				
element part	7/16″ UNF	MS16SST = MS16 (see above) w/ thermal lockout				
lentical to xes 2, 3 and 4.	Schroeder	MS16SSLCT = Low current MS16T				
	Check Test Points installed	MS17SSLCT = Low current MS17T				
stered OuPont Dow	in the filter head	Electrical MS13DC = Supplied w/ threaded connector & ligh	t			
	(upstream & downstream)	Visual MS14DC = Supplied w/ 5 pin Brad Harrison connector	or & light (male end)			
on supplied	DR = Drain on bowl	Electrical MS13SSDCT = MS13 (see above), direct current, w/ the	ermal lockout			
ounting holes.		Visual with MS13SSDCLCT = Low current MS13DCT				
Indicators ess Steel. ator setting placement		Thermal MS14SSDCT = MS14 (see above), direct current, w/ the Lockout MS14SSDCLCT = Low current MS14DCT	ermal lockout			

NOTES:

Box 2. Replacement element pa numbers are identical to contents of Boxes 2, 3 an

- Box 4. Viton[®] is a registered trademark of DuPont Do Elastomers.
- Box 5. B porting option supplie with metric mounting ho Box 8. All Dirt Alarm[®] Indicators
- must be Stainless Steel. Standard indicator settin is 50 psi. For replacement indicators, contact the factory.

	Top-Ported Pressure Filter	VF60	NF30
	Features and Benefits Top-ported high pressure filter 	70 gpm <u>265 L/mir</u> 6000 psi 415 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RFS50 RF60 CF60 CTF60 VF60 LW60 KF30
del No. of filter in photograph is VF609	PVZ10SD5.		KF50 TF50 KC50
del No. of filter in photograph is VF609	PVZ10SD5.		TF50 KC50 MKF50
Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids	Filter	TF50 KC50 MKF50 MKC50
Flow Rating: Max. Operating Pressure:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar)	Housing	TF50 KC50 MKF50
Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar)		TF50 KC50 MKF50 MKC50
Flow Rating: Max. Operating Pressure: Min. Yield Pressure:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1	Housing	TF50 KC50 MKF50 MKC50 KC65
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar)	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C)	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of VF60-9V:	 Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel 24.0 lbs. (10.9 kg) 	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of VF60-9V:	 Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel 24.0 lbs. (10.9 kg) 	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of VF60-9V:	 Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel 24.0 lbs. (10.9 kg) 	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of VF60-9V:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel 24.0 lbs. (10.9 kg) 4.0" (103 mm)	Housing Specifications	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 L150 LC50
Flow Rating: Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: Weight of VF60-9V:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids 6000 psi (415 bar) 15,500 psi (1070 bar), per NFPA T2.6.1 3300 psi (230 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar) Ductile Iron Steel 24.0 lbs. (10.9 kg) 4.0" (103 mm)	Housing	TF50 KC50 MKF50 MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50

.)		
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [*] (synthetic)	Compatibility NOF-50-760
High Water Content	All Z-Media [®] (synthetic)	FOF60-03
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	10100-03
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)	NMF30
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	RMF60
Skydrol®	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless	
	steel wire mesh in element, and light oil coating on housing exterior)	14-CRZX10

VF60 Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration	Ratio Per ISO 4572/NFP	Filtration Ratio	per ISO 16889			
	Using automate	d particle counter (APC) calibr	ated per ISO 4402	Using APC calibra	Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$		
9VZ1	<1.0	<1.0	<1.0	<4.0	4.2		
9VZ3	<1.0	<1.0	<2.0	<4.0	4.8		
9VZ5	2.5	3.0	4.0	4.8	6.3		
9VZ10	7.4	8.2	10.0	8.0	10.0		
9VZ25	18.0	20.0	22.5	19.0	24.0		
Element	DHC (gm)						
9VZ1	55						
9VZ3	57						
9VZ5	62						
9VZ10	60						
9VZ25	61						
Element	t Collapse Rating:	150 psid (10 bar) for s	standard elements				
	Flow Direction:	Outside In					
Element Nominal Dimensions:		9V: 2.9" (75 mm) O.D	0. x 9.5" (240 mm) lo	ng			

Top-Ported Pressure Filter

$\Delta P_{\rm housing}$ VF60 $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

 ΔP_{elem}

Determine $\Delta P_{\mbox{\tiny Fitter}}$ at 40 gpm (151 L/min) for VF609VZ1S using 120 SUS (25.5 cSt) fluid.

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 6 psi (.42 bar) on the graph for the VF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 13 psi (.90 bar) according to the graph for the 9VZ1 element.

Because the viscosity in this sample is 120 SUS (25.5 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

Exercise:

 $\Delta P_{\text{housing}} = 6 \text{ psi } [.42 \text{ bar}] | \Delta P_{\text{element}} = 13 \text{ psi } [.90 \text{ bar}]$

 $V_{f} = 120 \text{ SUS } (25.5 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .80$ $\Delta P_{\text{titler}} = 6 \text{ psi} + (13 \text{ psi} * .80) = 16.4 \text{ psi}$

<u>OR</u> $\Delta P_{\text{onc}} = .42 \text{ bar} + (...90 \text{ bar} * .80) = 1.14 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

VF6C

Note: If your element is not following equation: $\Delta P_{etement} =$ Flow Rate 2 this variable into the drop equation.	$x \Delta P_{f}$ Plug
Ele.	ΔΡ
9V3	0.32
9V10	0.24

VF60 Top-Ported Pressure Filter

Filter Model	BOX 1 BOX 2	/alid Model Numb	er for a Schroeder		
Number	VF60				
Selection	BOX 1 BOX 2 VF60 - 9	BOX 3 BOX 4	BOX 5 BOX 6 BOX 5	⁷ = VF609VZ1S	
	BOX 1 E	30X 2	BOX 3		BOX 4
		ement	Element Size a	ind Media	Seal Material
	VF60	9 V10 VZ1 VZ3	= V size 3 μ Excelleme	(cellulose) ent° Z-Media° (synthetic) ent° Z-Media° (synthetic)	Omit = Buna N V = Viton [°] H = EPR
		VZ10 VZ25	= V size 10 μ Excellem	ent" Z-Media" (synthetic) nent" Z-Media" (synthetic) nent" Z-Media" (synthetic) ia (reusable metal)	
	BOX 5 Inlet Port		BOX 6 Sypass		
	P = 1¼" NPTF S = SAE-20		0 PSI bypass 0 PSI bypass		
	B = ISO 228 G-1	4 "			
			BOX 7		
		Dirt A	larm [®] Options		
		Omit = None			
	Visual Visual with Thermal Lockout	D5 = Visual pop D8 = Visual w/ t	hermal lockout		
	Electrical	MS5LC = Low curre MS10 = Electrical M MS10LC = Low curre MS11 = Electrical M MS12 = Electrical M MS12LC = Low curre MS16 = Electrical M MS16LC = Low curre	 w/ DIN connector (male nt MS10 w/ 12 ft. 4-conductor wi v/ 5 pin Brad Harrison coi nt MS12 w/ weather-packed seal 	e end only) ire nnector (male end only) led connector	
NOTES:	Electrical with Thermal Lockout	MS5T = MS5 (see a MS5LCT = Low curre MS10T = MS10 (see MS10LCT = Low curre MS12T = MS12 (see MS12LCT = Low curre	bove) w/ thermal lockont MS5T above) w/ thermal lock nt MS10T above) w/ thermal lock nt MS12T	out kout kout	
Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4.		MS16T = MS16 (see MS16LCT = Low curre MS17LCT = Low curre		kout	
Box 2. Example: 9VZ1V synthetic media elements are only available with Viton seals.	Electrical Visual	MS14DC = Supplied v (male end	,	connector & light	
Box 4. Viton [°] is a registered trademark of DuPont Dow Elastomers.	Visual MS with Thermal	13DCLCT = Low curre	above), direct current,		
Box 5. B porting option supplied with metric mounting holes.	Lockout MS				

High-Flow, High Pressure Filter LW60

			NECO
	Features and Benefits	300 gpm	NFS3
	 Horizontal alignment allows straight-through flow, maximizing efficiency and minimizing pressure drop 	1135 L/m	YF3 in
			CFX3
		6000 psi 415 bar	PL
	lack of absolute fattings	413 Dal	CF4
	 Two-inch BSPP ports are easily adaptable to Super Stecko fittings commonly 		DF4
	used underground		PF4
Sc.	Stainless steel bypass valve that ensures smooth integration with 95/5 fluid		
SCHROEDER	 Non-bypassing version available with high crush (4500 psid) cleanable metal mesh (25 micron) element 		
A GRADE			RFe
Com R			CF6
and the second			CTF
			VFe
			LWe
			KF
			KF
el No. of filter in photograph is LW603	9ZPZ5VB32DPG.		TF
			KC
			MKF
Flow Rating:	Up to 300 gpm (1135 L/min) for use with 95/5 fluids	Filter	MKC
Max. Operating Pressure:		Housing	KC
Min. Yield Pressure:	18,000 psi (1240 bar), per NFPA T2.6.1	Specifications	MKC
Rated Fatigue Pressure:	4500 psi (310 bar), per NFPA T2.6.1		
Temp. Range: Bypass Setting:	-20°F to 225°F (-29°C to 107°C) Cracking: 50 psi (3.4 bar)		HS
bypass setting.			
Porting Cap:	LWN60 non-bypassing model available with high crush element		MHS
	Steel		
Housing: Weight:			KFH
Housing:	Steel Steel		KFH: LC
Housing: Weight:	Steel Steel 550 lb. (250 kg)		KFH: LC: LC:
Housing: Weight:	Steel Steel 550 lb. (250 kg)		KFH: LC: LC:
Housing: Weight:	Steel Steel 550 lb. (250 kg)		KFH: LC: LC:
Housing: Weight:	Steel Steel 550 lb. (250 kg) 34.0" (864 mm)		KFH LCC LCC LLC LCC
Housing: Weight: Element Change Clearance: Type Fluid Appropriate	Steel Steel 550 lb. (250 kg) 34.0" (864 mm)	Fluid	KFH LC LC LI LC NOF30-0
Housing: Weight: Element Change Clearance: Type Fluid Appropriate	Steel Steel 550 lb. (250 kg) 34.0" (864 mm)	Fluid Compatibility	KFH5 LCC LCS LLS LCS NOF30-0 NOF-50-76
Housing: Weight: Element Change Clearance: Type Fluid Appropriate	Steel Steel 550 lb. (250 kg) 34.0" (864 mm)		MHS6 KFH5 LC6 LC5 LC5 NOF30-0 NOF-50-76 FOF60-0

SCHROEDER INDUSTRIES 97

LW60 High-Flow, High Pressure Filter

High-Flow, High Pressure Filter

0 00

350

250

300

LW6

 ΔP_{housin} LW60 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{fiture}} = \Delta P_{\text{housing}} + (\Delta P_{\text{alexand}} * V_{\text{c}})$$

Exercise:

Determine ΔP_{riter} at 200 gpm (757 L/min) for LW6039ZPZ3VB32DPG using 75 SUS (16 cSt) fluid.

Use the housing pressure curve to determine ΔP_{bound} at 200 gpm. In this case, ΔP_{bound} is .25 psi (.02 bar) on the graph for the LW60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 12 psi (.83 bar) according to the graph for the 39ZPZ3 element.

Because the viscosity in this sample is 75 SUS (16 cSt), we determine the Viscosity Factor (V_c) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = .25 \text{ psi} [.02 \text{ bar}] | \Delta P_{\text{element}} = 12 \text{ psi} [.83 \text{ bar}]$

2.00 0.00

0

50

100

150

200 Flow Rate [GPM]

 $V_{f} = 75 \text{ SUS} (16 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = .50$ ΔP_{filter} = .25 psi + (12 psi * .50) = 6.25 psi <u>OR</u> $\Delta P_{\text{filter}} = .02 \text{ bar} + (.83 \text{ bar} * .50) = .44 \text{ bar}$

High-Flow, High Pressure Filter

_W60

Base-Ported Pressure Filter KF30/KF50

Model No. of filter in photograph is	 Features and Benefits Base-ported pressure filter Can be installed in vertical or horizontal position Meets HF4 automotive standard Element changeout from top minimizes oil spillage Offered in pipe, SAE straight thread, flanged and ISO 228 porting No-Element indicator option available Available with non-bypass option with high collapse element Integral inlet and outlet female test points option available Offered in conventional subplate porting Same day shipment model available Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements Available with quality-protected GeoSeal' Elements (GKF30/GKF50) 	100/150 gpm YF30 380/570 L/min YF30 KF30- 3000 psi PLD 210 bar CF40 KF50- 5000 psi DF40 345 bar PF40 RF550 RF60 CF60 CTF60 VF60 LW60 KF30 KF30
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min)	Filter TF50 Housing

	now nating.	With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Housing	TF50
Ν	lax. Operating Pressure:	KF30- 3000 psi (210 bar) KF50- 5000 psi (345 bar)	Specifications	KC50 MKF50
	Min. Yield Pressure:	KF30- 12,000 psi (830 bar), per NFPA T2.6.1 KF50- 15,000 psi (1025 bar), per NFPA T2.6.1		МКС50
	Rated Fatigue Pressure:	KF30- 2500 psi (170 bar), per NFPA T2.6.1-2005 KF50- 3500 psi (240 bar), per NFPA T2.6.1-2005		KC65
	Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
	Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.		HS60
	Porting Base & Cap: Element Case:	Ductile Iron Steel		MHS60
	Weight of KF30-1K:	48 lbs. (22 kg)		KFH50
	Weight of KF30-2K: Weight of KF30-3K:	65 lbs. (30 kg) 81 lbs. (37 kg)		LC60
	Weight of KF50-1K: Weight of KF50-2K:	59.7 lbs. (27.1 kg) 80.7 lbs. (36.6 kg)		LC35
_1	Weight of KF50-3K:	102.0 lbs. (46.3 kg)		LI50
Eler	nent Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		
				LC50
	Type Fluid	Appropriate Schroeder Media	Fluid	NOF30-05
	Petroleum Based Fluid	s All E media (cellulose), Z-Media [°] and ASP [°] Media (synthetic)	Compatibility	NOF-50-760
	High Water Conten	t All Z-Media [®] and ASP [®] Media (synthetic)		FOF60-03
	Invert Emulsion	s 10 and 25 μ Z-Media" (synthetic), 10 μ ASP" Media		10100-05
	Water Glycol	s $$ 3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) and all ASP $^{\circ}$ Media		NMF30
	Phosphate Ester	s All Z-Media [*] and ASP [*] Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation		RMF60
	Skydro	* 3, 5, 10 and 25 μ Z-Media * (synthetic) and all ASP * Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		14-CRZX10

-30/KF50 **Base-Ported Pressure Filter** Κŀ

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based o	on 100 p	si terminal pı	ressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

3000 psid (210 bar) for high collapse (ZX) versions

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance Information & Dirt Holding Capacity

Base-Ported Pressure Filter KF30/KF50

 $\Delta P_{housing}$ KF30/KF50 $\Delta P_{housing}$ for fluids with sp gr (specific gravity) = 0.86:

KZ/KGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

KKZ/KKGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 50 gpm (189.5 L/min) for KF301KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, $(\Delta P_{\text{element}} * V_r)$. The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 3 \text{ psi} + (2.5 \text{ psi} * 1.1) = 5.8 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_{f} Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

KF30/KF50 Base-Ported Pressure Filter

104 SCHROEDER INDUSTRIES

Base-Ported Pressure Filter TF50

	_	40	NFS30
		40 gpm	YF30
	Features and Benefits	<u>150 L/min</u>	CFX30
	Base-ported pressure filter	5000 psi	
	 Can be installed in vertical or horizontal position 	345 bar	PLD CF40
	 Element changeout from top minimizes oil spillage 		DF40
	 Offered in pipe, SAE straight thread, flanged and ISO 228 porting 		PF40
	 Available with non-bypass option with high collapse element 		
1.1	Integral inlet and outlet female test points option available		RF60
	 Offered in conventional subplate porting 		CF60
10 A 10			CTF60
			VF60
		LW60	
2		KF30	
			KF50
l No. of filter in photograph is Tl	-502A10P.		TF50
			KC50
			MKF50
Flow Rating:	Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids	Filter	MKC50
Max. Operating Pressure:		Housing	MICOU
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1	Specifications	KC65
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005		MKC65
	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 69 psi (4.8 bar) Non-bypassing model has a blocked bypass.		HS60 MHS60
Porting Base: Element Case & Cap:	Ductile Iron		KFH50
Weight of TF50-1A: Weight of TF50-2A:			LC60
Element Change Clearance:	8.50" (215 mm)		LC35
			1150

Model

	Fluid NOF30-0	Appropriate Schroeder Media	Type Fluid
	Compatibility NOF-50-76	All E media (cellulose) and Z-Media [®] (synthetic)	Petroleum Based Fluids
	FOF60-0.	All Z-Media [®] (synthetic)	High Water Content
)	10100-0.	10 and 25 μ Z-Media $^{\circ}$ (synthetic)	Invert Emulsions
	NMF3	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)	Water Glycols
	RMF6	All Z-Media [®] (synthetic) with H (EPR) seal designation	Phosphate Esters
	14-CRZX1	3, 5, 10 and 25 μ Z-Media * (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	Skydrol*

Base-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

TF50

		atio Per ISO 4572/NFI particle counter (APC) calib		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
AZ1	<1.0	<1.0	<1.0	<4.0	4.2	
AZ3	<1.0	<1.0	<2.0	<4.0	4.8	
AZ5	2.5	3.0	4.0	4.8	6.3	
AZ10	7.4	8.2	10.0	8.0	10.0	
AZ25	18.0	20.0	22.5	19.0	24.0	
CCZX3	<1.0	<1.0	<2.0	4.7	5.8	
CCZX10	7.4	8.2	10.0	8.0	10.0	
Element	DHC (gm)					
AZ1	25					
AZ3	26					
AZ5	30					
AZ10	28					
AZ25	28					
CCZX3	26*					
CCZX10	28*					
Elem	ent Collapse Rating:	: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions				
	Flow Direction:	Outside In		* Based on 100 psi	terminal pressure	
Element Nominal Dimensions: A: 3.0" (75 mm) O.D. x 4.5" (115 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long						

Base-Ported Pressure Filter

$\Delta P_{\text{housing}}$ TF50 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Drop Information Based on Flow Rate and Viscosity

Pressure

TF50

Exercise:

Determine ΔP_{mer} at 15 gpm (57 L/min) for TF501AZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.8 psi (.12 bar) on the graph for the TF50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 3.8 psi (.26 bar) according to the graph for the AZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1.8 \text{ psi} [.12 \text{ bar}] | \Delta P_{\text{element}} = 3.8 \text{ psi} [.26 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$ $\Delta P_{\text{filter}} = 1.8 \text{ psi} + (3.8 \text{ psi} * 1.2) = 6.4 \text{ psi}$ <u>OR</u>

 $\Delta P_{\text{filter}} = .12 \text{ bar} + (.26 \text{ bar} * 1.2) = .43 \text{ bar}$

Note: If your element is not graphed, use the

following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\text{f}}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP
A3	0.53	AA3	0.16
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03
CCZX3	0.29		
CCZX10	0.26		

Base-Ported Pressure Filter

F2()

Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used.

NOTES:

KC50

Features and Benefits

- Base-ported pressure filter
- Patented dirt-tolerant cap design
- Can be installed in vertical or horizontal position
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Ofered in pipe, SAE straight thread, flanged and ISO 228 porting
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- G Available with quality-protected GeoSeal^{*} Elements (GKC50)

Model No. of filter in photograph is KC501KZ10PD.

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter Housing Specifications
Max. Operating Pressure:	5000 psi (345 bar)	specifications
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1	
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.	
Porting Base & Cap:	Ductile Iron	
Element Case:	Steel	
Weight of KF30-1K: Weight of KF30-2K: Weight of KF30-3K:	87.8 lbs. (39.8 kg)	
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K	

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [®] and ASP [®] Media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ (synthetic), 10 μ ASP $^{\circ}$ Media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), and all ASP $^{\circ}$ Media	
Phosphate Esters	All Z-Media' and ASP' Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	
Skydrol [®]	3, 5, 10 and 25 μ Z-Media [°] (synthetic), and all ASP [°] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

<u>380/570 Ľ/mi</u>n 5000 psi 345 bar

100/150 gpm

v.112923

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element
Performance
Information & Dirt
Holding Capacity

KC50

									Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element			ß _x ≥	75	ß _x ≥ 100	ß	≥ 200	$\beta_x(c) \ge 200$ $\beta_x(c) \ge 100$		≥ 1000	
KZ1/KKZ1/27KZ1				<1	.0	<1.0		<1.0	<4.0		4.2
KZ3/KKZ3/27KZ3				<1	.0	<1.0		<2.0	<4.0		4.8
KZ5/KKZ5/27KZ5				2.	5	3.0		4.0	4.8		6.3
KZ10/KKZ10/27KZ10				7.4	4	8.2		10.0	8.0	1	0.0
KZ25/KKZ25/27KZ25				18.	.0	20.0		22.5	19.0	2	4.0
KZW1		N/	A	N/A		N/A	<4.0 <		:4.0		
KZW3/KKZW3				N/	A	N/A	N/A		4.0		4.8
KZW5/KKZW5				N/	A	N/A		N/A	5.1		6.4
KZW10/KKZW10				N/	A	N/A		N/A	6.9	5.9 8.6	
KZW25/KKZW25				N/	A	N/A		N/A	15.4	15.4 18.	
KZX3/KKZX3/27KZX3				<1	.0	<1.0	<	:2.0	4.7 5		5.8
KZX10/KKZX10/27KZX1	10			7.	4	8.2	10.0		8.0 9		9.8
)HC gm)	Element	DHC (gm)		lement		DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1 1	12	KKZ1	224	2	27KZ1		336	KZW1	61		
KZ3 1	15	KKZ3	230	2	27KZ3		345	KZW3	64	KKZW3	128
KZ5 1	19	KKZ5	238	2	27KZ5		357	KZW5	63	KKZW5	126
KZ10 10	08	KKZ10	216	2	27KZ10		324	KZW10	57	KKZW10	114
KZ25 9	93	KKZ25	186	2	27KZ25		279	KZW25	79	KKZW25	158

KKZX10 Element Collapse Rating:

KKZX3

81*

90*

27KZX10 150 psid (10 bar) for standard elements

27KZX3

163*

182*

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

249*

279*

* Based on 100 psi terminal pressure

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long KK:

3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

KZX3

KZX10

$\Delta P_{\rm housing}$ KC50 $\Delta P_{\rm houseg}$ for fluids with sp gr (specific gravity) = 0.86:

Drop Information Based on Flow Rate and Viscosity

Pressure

KC50

Exercise:

Determine $\Delta P_{\text{\tiny filter}}$ at 50 gpm (189.5 L/min) for KC501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nouting}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KC50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 3 \text{ psi} + (2.5 \text{ psi} * 1.1) = 5.8 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\underline{f}}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

Filter BOX 4 BOX 6 BOX 7 BOX 9 BOX 10 BOX 1 BOX 2 BOX 3 BOX 5 BOX 8 BOX 11 Model KC50 Number Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11 S = KC501KZ10SD5 KC50 1K Ζ 10 D5 BOX 3 BOX 1 BOX 2 Number & Size of Filter Media Type Series Elements Omit = E Media (Cellulose) (KC50 only) K, KK, 27K KC50 1 2 Κ AS = Anti-Stat Media (synthetic) KCN50 3 Κ Z = Excellement[®] Z-Media[®] (synthetic) (Non-GeoSeal[®] Options ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (KCN50 Only) bypassing: 1 KG, KKG, 27KG ZW = Aqua-Excellement ZW Media (KC50 Only) requires ZX high collapse KG W = W Media (water removal) 2 elements) 3 KG M = Media (reusable metal mesh) (KC50 & KCN50 Only) GKC50 (GeoSeal®) BOX 7 WKC50 (Water) Porting BOX 4 BOX 5 BOX 6 $P = 1 \frac{1}{2}$ "NPTF **Micron Rating** Seal Material **Magnet Option** P32 = 2" NPTF S = SAE-241 = 1 Micron (Z, ZW, ZX media) Omit = Buna N Omit = None F = 1 ½" SAE (AS,E, Z, ZW, ZX media) 3 = 3 Micron V = Viton[®] 4-bolt flange M = Magnet (AS, Z, ZW, ZX media) 5 = 5 Micron H = EPRinserts (not Code 62 10 = 10 Micron (AS,E,M, Z, ZW, ZX media) available w/ O = Subplate (E,M, Z, ZW, ZX media) 25 = 25 Micron H.5 = Skydrol^{*} compatibility indicator in B24 = ISO 228 60 = 60 Micron (M media) cap) G-1 ½ 150 = 150 Micron (M media) (M media) 260 = 260 Micron

BOX 8		BOX 10	BOX 11
Bypass		Dirt Alarm [®] Options	Additional Options
Omit = 40 PSI Bypass	None	Omit = None	Omit = None
X = Blocked bypass		D = Pointer	N = No-Element
50 = 50 psi bypass	Visual	D5 = Visual pop-up	Indicator (not
setting	VISUUI	D5C = D5 in cap	available w/
(Omit Box 8 if KCN50)		D9 = All stainless D5	KCN50 or
(011112000011101130)	Visual with	D8 = Visual w/ thermal lockout	GKC50 housings
BOX 9	Thermal Lockout	D8C = D8 in cap	w/ indicator in cap)
Test Points		MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	G509 = Dirt Alarm and
Omit =None		MS5LC = Low current MS5	drain opposite
Omit = None		MS10 = Electrical w/ DIN connector (male end only)	standard
L = Two ¼" NPTF inlet		MS10LC = Low current MS10	G588 = Electric Switch
& outlet female test	Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire	and drain
ports		MS12 = Electrical w/5 pin Brad Harrison connector (male end only)	opposite
U = Series 1215 % UNF		MS12LC = Low current MS12	standard
Schroeder Check		MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16	
Test Point installed			
in cap (upstream)		MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout	
UU = Series 1215 % UNF		MSSLCT = Low current MSST	
Schroeder Check		MS10T = MS10 (see above) w/ thermal lockout	
Test Point installed	Electrical	MS10LCT = Low current MS10T	
in block (upstream	with	MS12T = MS12 (see above) w/ thermal lockout	
and downstream)	Thermal Lockout	MS12LCT = Low current MS12T	
	LOCKOUT	MS16T = MS16 (see above) w/ thermal lockout	
		MS16LCT = Low current MS16T	
		MS17LCT = Low current MS17T	
	Electrical	$MS = Cam operated switch w/ \frac{1}{2}" conduit female connection$	
	Visual	MS13DC= Supplied w/ threaded connector & light	
	VISUUI	MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)	
	Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
	Visual with	MS13DCLCT = Low current MS13DCT	
	Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
	Lockout	MS14DCLCT = Low current MS14DCT	

How to Build a Valid Model Number for a Schroeder KC50:

NOTES:

- Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[°] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For option F, bolt depth .75" (19 mm). For option O, O-rings included; hardware not included.
- Box 8. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 10. Standard indicator setting for non-bypassing model is 50 psi unless otherwise specified.
- Box 11. Option N, are not available with KCN50/GKC50. N option should be used in conjunction with dirt alarm.

Features and Benefits

- Base-ported high pressure dual filter manifold mounted
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Offered in pipe porting (contact factory for other porting options)
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- GeoSeal[®] Elements (GMKF50)

MKC50 200 gpm 760 L/min 5000 psi 345 bar

MKF50/

G Available with quality-protected

Model No. of filter in photograph are MKF504K10PD5 and MKC504K10PD5.

housing exterior)

			KC3U
Flow Rating	g: Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pressure	e: 5000 psi (345 bar)	Housing	MIKE SU
Min. Yield Pressure	e: 15,000 psi (1035 bar), per NFPA T2.6.1	Specifications	MKC50
Rated Fatigue Pressure	e: 3500 psi (240 bar), per NFPA T2.6.1-2005		KC65
Temp. Range	e: -20°F to 225°F (-29°C to 107°C)		
Bypass Setting	g: Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.		MKC65 HS60
Porting Base & Cap Element Case			MHS60
Weight of MKF50-2 Weight of MKF50-4	K: 243.0 lbs. (110.2 kg)		KFH50
Weight of MKF50-6 Weight of MKC50-2	K: 216.0 lbs. (98.0 kg)		LC60
Weight of MKC50-4 Weight of MKC50-6			LC35
Element Change Clearance	e: 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		LI50
		-	LC50
Type Fluid	Appropriate Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	NOF-50-760
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)		
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ (synthetic), 10 μ ASP $^{\circ}$ Media (synthetic)		FOF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), and all ASP $^{\circ}$ Media		NMF30
Phosphate Esters	All Z-Media* and ASP* Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation		RMF60
Skydrol°	3, 5, 10 and 25 μ Z-Media [*] (synthetic), and all ASP [*] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on		14-CRZX10

SCHROEDER INDUSTRIES 113 v.112923

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402					Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			
Element		ß _x ≥ 7	5 ß _x ≥	: 100	ß _x ≥	200	$\beta_x(c) \ge 200 \qquad \beta_x(c)$		0 ß _x (c) ;	≥ 1000		
KZ1/KKZ1/27KZ1				<1.0	<	1.0	<	1.0	<4	4.0	4	.2
KZ3/KKZ3/27KZ3				<1.0	<	1.0	<	2.0	<4	4.0	4	.8
KZ5/KKZ5/27KZ5				2.5	3	.0	4	l.0	4	.8	6	.3
KZ10/KKZ10/27K	Z10			7.4	8	3.2	10	0.0	8	8.0	1	0.0
KZ25/KKZ25/27K	Z25			18.0	2	0.0	22	2.5	19	9.0	2	4.0
KZW1				N/A	Ν	/A	N	I/A	<4	4.0	<	4.0
KZW3/KKZW3				N/A	Ν	/A	N	I/A	4.0 4.3		.8	
KZW5/KKZW5				N/A	Ν	/A	N/A		5.1		6	.4
KZW10/KKZW10				N/A	Ν	/A	N/A		6	6.9 8.6		.6
KZW25/KKZW25				N/A	Ν	/A	N	I/A	15	5.4	18.5	
KZX3/KKZX3/27K	ZX3			<1.0	<1.0)	<2.	.0	4.7	7	5	.8
KZX10/KKZX10/2	7KZX10			7.4	8.2	!	10.	.0	8.0)	9.8	
	DHC		DHC	:		DH	c		Dŀ	-IC		DHC
Element	(gm)	Element	(gm)) Ele	ement	(gm	ר) E	Element	(gr	m)	Element	(gm)
KZ1	112	KKZ1	224	27	KZ1	336	5 K	KZW1	6	1		
KZ3	115	KKZ3	230	27	KZ3	345	5 K	KZW3	6	4	KKZW3	128
KZ5	119	KKZ5	238	27	KZ5	357	7 1	KZW5	6	3	KKZW5	126
KZ10	108	KKZ10	216	27	<z10< td=""><td>324</td><td>4 K</td><td>KZW10</td><td>5</td><td>7</td><td>KKZW10</td><td>114</td></z10<>	324	4 K	KZW10	5	7	KKZW10	114
KZ25	93	KKZ25	186	27	KZ25	279	9 k	KZW25	7	9	KKZW25	158
KZX3	81*	KKZX3	163*	27	KZX3	249)*					
KZX10	90*	KKZX10	182*	27	KZX10	279)*	* Based	on 100	psi t	erminal pre	ssure
Element Collapse Rating: 150 psid (10 bar) fo								versions				

Flow Direction: Outside In

3000 psid (210 bar) for high collapse (ZX) versions

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{inter} at 100 gpm (379 L/min) for MKF504KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKF50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 100 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi [.55 bar]} | \Delta P_{\text{element}} = 2 \text{ psi [.14 bar]}$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{comment}} = Flow Rate x \Delta P_{f} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

How to Build a Valid Model Number for a Schroeder MFK50: Filter BOX 5 BOX 6 BOX 1 BOX 2 BOX 3 BOX 4 BOX 7 BOX 8 BOX 9 **BOX 10** Model MKF50 Number Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 Ρ 2K Ζ = MKF502KZ10PD5 MKF50 -10 D5 BOX 1 BOX 2 BOX 3 Number & Size of **Filter Series** Media Type Elements Omit = E Media (Cellulose) (MKF50 only) 2 K, KK, 27K MKF50 4 Κ AS = Anti-Stat Media (synthetic) MKFN50 6 к Z = Excellement[°] Z-Media[°] (synthetic) (Non-bypassing: GeoSeal[®] Options ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (MKFN50 Only) requires ZX high collapse elements) ZW = Aqua-Excellement ZW Media (MKF50 Only) 2 KG, KKG, 27KG 4 KG W Media (water removal) W = GMKF50 6 KG M = Media (reusable metal mesh) (MKF50 & MKFN50 Only) (GeoSeal*) MKC50 MKCN50 (Non-bypassing: requires ZX high collapse elements) WKC50 (Water) BOX 4 BOX 5 BOX 6 BOX 7 Seal Material **Micron Rating** Porting **Bypass** (DZ, Z, ZW, ZX media) = 1 Micron Omit = Buna N Omit = None 1 P = 21/2" NPTF (AS,DZ, E, Z, ZW, ZX media) 3 = 3 Micron $V = Viton^{*}$ F40 = 2½" SAE X = Blocked bypass 4-bolt flange 5 = 5 Micron (AS, DZ, Z, ZW, ZX media) H = EPR50 = 50 PSI Bypass Code 61 (Omit Box 7 if a non-bypassing 10 = 10 Micron (AS, DZ, E, M, Z, ZW, ZX media) = 2" 4 SAE F32 filter is used) 25 (E, DZ, M, Z, ZW, ZX media) H.5 = Skydrol^{*} compatibility = 25 Micron bolt flange 60 = 60 Micron (M media) Code 61 P32 = 2"NPTF150 = 150 Micron (M media) B32 = ISO 228 G-2'260 = 260 Micron (M media) BOX 9 BOX 10 BOX 8 **Test points** Dirt Alarm[®] Options Additional Options Omit = None None Omit = None Omit = None D = Pointer N = No-Element L = Two 1/4" NPTF inlet D5 = Visual pop-up Indicator (not and outlet female Visual D5C = D5 in cap available w/ test ports D9 = All stainless D5 MKFN30/MKCN50 = Series 1215 7/16 U Visual with or housings w/ D8 = Visual w/thermal lockout UNF Schroeder Thermal indicator in cap) Check Test Point D8C = D8 in capLockout installed in cap MS5 = Electrical w/12 in. 18 gauge 4-conductor cable (upstream) MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T $MS = Cam operated switch w/ \frac{1}{2}'' conduit female connection$ Electrical MS13 = Supplied w/threaded connector & light Visual MS14 = Supplied w/5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Number of elements must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 9. Standard indicator setting for non-bypassing model is 50 psi unless otherwise specified.
- Box 10. N option should be used in conjunction with dirt alarm.

Flectrical

Thermal

Lockout

Visual with

Features and Benefits	1 00	NFS30
 Base-ported high pressure filter 	100 gpm	YF30
 Patented dirt-tolerant cap design 	380 L/min	CEV20
 Can be installed in vertical or horizontal position 	6500 psi	CFX30 PLD
 Meets HF4 automotive standard 	450 bar	65.40
 Element changeout from top minimizes oil spillage 		CF40 DF40
 Offered in flanged porting 		
No-Element indicator option available		PF40
 Available with non-bypass option with high collapse element 		
Integral inlet and outlet female test points option available		RF60
Double and triple stacking of K-size element can be replaced by single KK or 27K-size element		CF60 CTF60
G Available with quality-protected GeoSeal [*] Elements (GKC65)		VF60
		LW60
		KF30
		KF50
	-	TF50
		KC50
		MKE50

Model No. of filter in photograph is KC651K10FD9.

			MKF50
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	6500 psi (450 bar)	Housing	MKC50
Min. Yield Pressure:	19,500 psi (1345 bar), per NFPA T2.6.1	Specifications	KC65
Rated Fatigue Pressure:	5000 psi (345 bar), per NFPA T2.6.1-2005		MUCCE
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
Bypass Setting:	Cracking: 40 psi (2.8 bar)		HS60
	Full Flow: 75 psi (5.2 bar) Non-bypassing model has a blocked bypass.		MHS60
Porting Base & Cap:	Ductile Iron		KELICO
Element Case:	Steel		KFH50
Weight of KC65-1K: Weight of KC65-2K:	80 lbs. (36.3 kg) 102 lbs. (46.3 kg)		LC60
Weight of KC65-3K:	124 lbs. (56.3 kg)		LC35
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		LC35
			LI50
			LC50
			NOF30-05
Type Fluid Appropri	ate Schroeder Media	Fluid	
Petroleum Based Fluids All E med	lia (cellulose) and Z-Media [®] (synthetic)	Compatibility	NOF-50-760
High Water Content All Z-Mee	dia [®] and ASP [®] Media (synthetic)		FOF60-03
Invert Emulsions 10 and 2	5 μ Z-Media [®] (synthetic), 10 μ ASP [®] Media (synthetic)		
Water Glycols 3, 5, 10 a	nd 25 μ Z-Media $^{\circ}$ (synthetic) and all ASP $^{\circ}$ Media (synthetic)		NMF30

Phosphate Esters All Z-Media" and ASP" Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation 3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) and ASP $^{\circ}$ Media (synthetic) with H.5 seal designation Skydrol® (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

65 K(

Base-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element
Performance
Information & Dirt
Holding Capacity

		tion Ratio Per ISO NFPA T3.10.8.8 particle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

	DHC		DHC		DHC		DHC		DHC
Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on	100 psi t	erminal pres	sure

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

$\Delta P_{\text{housing}}$ KC65 ΔP_{houses} for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KC651KZ10FD9 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KC65 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_i) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4 \text{ psi} [.27 \text{ bar}] | \Delta P_{\text{element}} = 2.5 \text{ psi} [.17 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 4 \text{ psi} + (2.5 \text{ psi} * 1.1) = 6.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .27 \text{ bar} + (.17 \text{ bar} * 1.1) = .46 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

KC65

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\underline{f}}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZX3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZX5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZX10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZX25	0.07	3KZX10/ 27KZX10	0.07

7608360 (LF-3255C). Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[°] is a registered trademark of **DuPont Dow Elastomers.**

NOTES:

equal 1

contents

.65

Box 7. For option F, bolt depth 1.12" (30 mm).

Skydrol[®] is a registered trademark of Solutia Inc.

- Box 8. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 10. Standard indicator setting for non-bypassing model is 50 psi unless otherwise specified.
- Box 11. Option N is not available with KCN65. N option should be used in conjunction with dirt alarm.

A – blockeu bypass	visuai	D9 =	All stainless D5	N = N
50 = 50 psi bypass		MS5SS =	Electrical w/ 12 in. 18 gauge 4-conductor cable	
setting		MS5SSLC =	Low current MS5	a
(Omit Box 8 if a KCN65 is		MS10SS =	Electrical w/ DIN connector (male end only)	К
selected)		MS10SSLC =	Low current MS10	h
	Electrical	MS11SS =	Electrical w/ 12 ft. 4-conductor wire	ir
	Licetticui	MS12SS=	Electrical w/ 5 pin Brad Harrison connector (male end only)	G509 = D
BOX 9		MS12SSLC =	Low current MS12	d
Test Points		MS16SS =	Electrical w/ weather-packed sealed connector	st
Omit =None			Low current MS16	
Offic = None			Electrical w/ 4 pin Brad Harrison male connector	
L = Two ¼" NPTF inlet			MS5 (see above) w/ thermal lockout	
& outlet female test			Low current MS5T	
ports	Electrical		MS10 (see above) w/ thermal lockout	
U = Series 1215 % UNF	with		Low current MS10T	
Schroeder Check	Thermal		MS12 (see above) w/ thermal lockout	
Test Point installed	Lockout		Low current MS12T	
in cap (upstream)			MS16 (see above) w/ thermal lockout	
UU = Series 1215 % UNF			Low current MS16T	
Schroeder Check			Low current MS17T	
Test Point installed	Electrical		Cam operated switch w/ ½" conduit female connection	
in block (upstream	Visual		Supplied w/ threaded connector & light	
and downstream)			Supplied w/5 pin Brad Harrison connector & light (male end)	
	Electrical		MS13 (see above), direct current, w/ thermal lockout	
	Visual		Low current MS13DCT	
	with	MS14DCT =	MS14 (see above), direct current, w/ thermal lockout	
	Thermal Lockout	MS14DCLCT =	Low current MS14DCT	

odel No. of filter in photograp	h is MKC654K10BD5.		VF60 LW60 KF30 KF50 TF50 KC50
Flow Rating:	Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids Up to 300 gpm (1,136 L/min) for Water/Oil Emulsions	Filter Housing	MKF50
Max. Operating Pressure:	6000 psi (413 bar)	Specifications	MKC50
Min. Yield Pressure:	18,000 psi (1240 bar), per NFPA T2.6.1		MIKCOU
Rated Fatigue Pressure:	4500 psi (310 bar), per NFPA T2.6.1-2005		KC65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.		HS60
Porting Base & Cap: Element Case:	Ductile Iron Steel		
	Ductile Iron		KFH50
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K:	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg)		KFH50 LC60
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K:	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)		KFH50 LC60 LC35
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K:	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)		KFH50 LC60 LC35 LI50
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K:	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)		KFH50 LC60 LC35 L150 LC50
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance:	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)	Fluid	KFH50 LC60 LC35 L150 LC50
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance: Type Fluid	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg) 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K	Fluid Compatibility	KFH50 LC60 LC35 LI50 LC50 NOF30-05
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance: Type Fluid A Petroleum Based Fluids	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg) 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance: Type Fluid Petroleum Based Fluids High Water Content Invert Emulsions	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg) 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance: Type Fluid Petroleum Based Fluids High Water Content High Water Content Water Glycols	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg) 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K 4.12 mm) for 1K; 17.50" (445 mm) for 1K; 17.50" (445 mm) for 1K; 17.50" (445 mm) for 27K 4.12 mm for 1K; 17.50" (445 mm) for 1K; 17.50" (445 mm) for 27K 4.12 mm for 1K; 17.50" (445 mm) for 1K; 17.50" (445 mm) for 27K 4.12 mm for 1K; 17.50" (445 mm) for 1K; 17.50" (445 mm) for 2K; 18.50" (445 mm) for 2K; 18.50		MHS60 KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03 NMF30
Element Case: Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K: Element Change Clearance: Type Fluid Petroleum Based Fluids High Water Content High Water Content Water Glycols Phosphate Esters	Ductile Iron Steel 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg) 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		KFH50 LC60 LC35 LI50 LC50 NOF30-05 NOF-50-760 FOF60-03

*Rated for Water/Oil Emulsions

SCHROEDER INDUSTRIES 121

MKC65 Base-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element				ß _x ≥ 75	$\beta_x \ge 100$	ß	_x ≥ 200	$\beta_x(c) \ge 20$	00 ß _x (c)	≥ 1000
KZ1/KKZ1/27KZ1				<1.0	<1.0		<1.0	<4.0	2	1.2
KZ3/KKZ3/27KZ3				<1.0	<1.0		<2.0	<4.0	2	1.8
KZ5/KKZ5/27KZ5		2.5	3.0		4.0	4.8	(5.3		
KZ10/KKZ10/27K	Z10			7.4	8.2		10.0	8.0	1	0.0
KZ25/KKZ25/27KZ25		18.0	20.0		22.5	19.0	2	4.0		
KZW1				N/A	N/A		N/A	<4.0	<	4.0
KZW3/KKZW3				N/A	N/A		N/A	4.0	2	1.8
KZW5/KKZW5				N/A	N/A		N/A	5.1	6	5.4
KZW10/KKZW10				N/A	N/A		N/A	6.9	8	3.6
KZW25/KKZW25			N/A	N/A		N/A	15.4	1	8.5	
KZX3/KKZX3/27K	ZX3			<1.0	<1.0		<2.0	4.7	!	5.8
KZX10/KKZX10/2	7KZX10			7.4	8.2	1	0.0	8.0	ç	9.8
Element	DHC (gm)	Element	DHC (gm)		ent	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ	1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ	3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ	5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ	10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ	25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZ	X3	249*				
KZX10	90*	KKZX10	182*	27KZ	X10	279*	* Based	on 100 psi	termianl pre	essure
	Element Collanse Rating: 150 ncid (10 har) for standard elements									

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance Information & Dirt Holding Capacity

Pressure

Information

Drop

Based on

Flow Rate

and Viscosity

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{fitter} at 100 gpm (379 L/min) for MKC654KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKC65 housing.

Use the element pressure curve to determine $\Delta P_{\text{stemant}}$ at 100 gpm. In this case, $\Delta P_{\text{stemant}}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] | \Delta P_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{element}$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

MKC65 Base-Ported Pressure Filter

NOTES:

Number of elements Box 2. must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N 7608360 (LF-3255C).

- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 9. Standard indicator setting for non-bypassing model is 50 psi unless otherwise specified.
- Box 10. N option should be used in conjunction with dirt alarm.

		 Features and Benefits Full flow reverse flow check valve diverts flow past the element in hydrostatic applications Top-ported design capable of handling 100 gpm flow 	120 gpm <u>450 L/mir</u> 6000 psi 415 bar	NFS30 YF30 CFX30 PLD CF40
	,	 Offered in SAE straight thread and flange porting 		DF40
		 Thread on bowl with drain plug for easy 		PF40
		element service 6000 psi cyclic		
		 Certified for Offshore Standard DNVGL- 		RF60
	5:00	OS-D101 "Marine and Machinery Systems and Equipment"		CF60
		Contact factory for higher flow applications		CTF60
				VF60
				LW60
				KF30
				KF50
Model No. of filters in photograph are	e HS6013HZ3F24 and MHS6	013HZ3F24.	-	TF50
				KC50
				MKF50
Flow Rating: Up	o to 120 gpm (450 L/min)		Filter	MKC50
Max. Operating Pressure: 600		ge ported models	Housing	KC65
Min. Yield Pressure: Co	ntact factory		Specifications	
Rated Fatigue Pressure: 600 (or	00 psi (415 bar) nly with 4-bolt flange portin	g)		MKC65
Temp. Range: -20	0°F to 225°F (-29°C to 107°C)			HS60
Bypass Setting: Cra	acking: 87 psi (5.9 bar)			MHS60
Porting Head: Du Element Case: Ste				KFH50
Weight of HS60-13H: 75	-			LC60
Weight of MHS60: 160 Element Change Clearance: 4.0	-			LC35
			-	
				L150
				LC50
Type Fluid	Appropriate Schroeder Me	edia	Fluid	NOF30-05
High Water Content	All Z-Media [®] (synthetic)		Compatibility	NOF-50-760
Invert Emulsions	10 and 25 μ Z-Media [®] (synt			FOF60-03
Water Glycols Phosphate Esters	3, 5, 10 and 25 μ Z-Media [*] All Z-Media [*] (synthetic) wit	(synthetic) th H (EPR) seal designation		
i nospitale Estels				NMF30
				RMF60
				14-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratic		Filtration Ratic	per ISO 16889 ted per ISO 11171	
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
13HZ3/13HZX3	<1.0 <1.0		<2.0	<4.0	4.8
13HZ5/13HZX5	2.5 3.0		4.0	4.8	6.3
13HZ10/13HZX10	7.4 8.2		10.0	8.0	10.0
13HZ25/13HZX25	18.0	20.0	22.5	19.0	24.0
Element	DHC (gm)		Element	DHC (g	m)
13HZ3	100.7		13HZX3	75.7	
13HZ5	113.2		13HZX5	74.1	
13HZ10	119.7		13HZX10 81.4		

Element Performance Information & Dirt **Holding Capacity**

Element Collapse Rating: 290 psi (20 bar) for standard elements 3045 psi (210 bar) for high collapse (ZX) versions 92.9

13HZX25

Flow Direction: Outside In

123.5

Element Nominal Dimensions: 13HZ: 3.5" (90 mm) O.D. x 13" (325 mm) long

13HZ25

ΔP_{hou}

HS60/MHS60 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{hourses}} + (\Delta P_{\text{alement}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{mer} at 30 gpm (113.7 L/min) for HS6013HZ10S24D13 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nouting}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the HS60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the 13HZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_i) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] | \Delta P_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 7 \text{ psi} + (2 \text{ psi} * 1.1) = 9.2 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .48 \text{ bar} + (.14 \text{ bar} * 1.1) = .63 \text{ bar}$ Note: If your element is not graphed, use the following equation: $\Delta P_{\text{stement}} = \text{Flow Rate x } \Delta P_{\text{f}}.$ Plug this variable into the overall pressure drop equation.

Ele.	ΔΡ
13HZX3	0.176
13HZX5	0.104
13HZX10	0.054
13HZX25	0.048

Filter Model Jumber election	How to Build a V BOX 1 BOX HS60 – Example: NOTE: One BOX 1 BOX	2 BC	DX 3 BOX 4	BOX 5		
	HS60 – 13HZ	Z3 –	– F24	– D13 = F	IS6013HZ3F24D13	
	BOX 1			BOX 2		BOX 3
	Filter Series			Element Part Nu	umber	Seal Material
	HS60 HSN60 (Non-bypassing: requires ZX high	13H 13HZ 13HZ	Z5 = 5 μ Excell 10 = 10 μ Exce 25 = 25 μ Exce	ement [°] Z-Media [°] (ement [°] Z-Media [°] Ilement [°] Z-Media [°] Ilement [°] Z-Media	(synthetic) ° (synthetic) ° (synthetic)	Omit = Buna I V = Viton [*] H = EPR
	collapse elements) MHS60 MHSN60 (Non-bypassing: requires ZX high	13HZ 13HZX	X5 = 5 μ Excell 10 = 10 μ Exce	ement [°] Z-Media [°] llement [°] Z-Media	(high collapse center tube) (high collapse center tube) ° (high collapse center tube) ° (high collapse center tube)	
	collapse elements) BOX 4	ons			BOX 5 Dirt Alarm [®] Options	
	S24 = SAE-24		None	Omit =		
	F24 = 1½" SAE 4-bolt fl Code 62	lange	Visual	D13=	Visual pop-up Electrical w/ 12 in. 18 gauge 4-cor	nductor cable
	F32 = 2"SAE 4 flange (62			MS10SS =	Low current MS5 Electrical w/ DIN connector (male Low current MS10	end only)
			Electrical	MS12SS=	Electrical w/ 12 ft. 4-conductor wi Electrical w/ 5 pin Brad Harrison co only)	
				MS16SS = MS16SSLC =	Low current MS12 Electrical w/ weather-packed seal Low current MS16 Electrical w/ 4 pin Brad Harrison m	
			Electrical	MS5SST = MS5SSLCT = MS10SST =	MS5 (see above) w/ thermal lock Low current MS5T MS10 (see above) w/ thermal lock Low current MS10T	but
			with Thermal Lockout	MS12SSLCT = MS16SST =	MS12 (see above) w/ thermal lock Low current MS12T MS16 (see above) w/ thermal lock Low current MS16T	
nt part al to and 3.			Electrical Visual		Low current MS17T Supplied w/ threaded connector a Supplied w/ 5 pin Brad Harrison cor end)	•
tors eel. etting nent			Electrical Visual with Thermal Lockout	MS13SSDCLCT = MS14SSDCT =	MS13 (see above), direct current, v Low current MS13DCT MS14 (see above), direct current, v Low current MS14DCT	

- Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.
- Box 3. Viton[°] is a registered trademark of DuPont Dow Elastomers.
- Box 5. All Dirt Alarm^{*} Indicators must be Stainless Steel. Standard indicator setting is 75 psi. For replacement indicators, contact the factory.

Hydrostatic Base-Ported Filter K

KFH50

KFH50

Hydrostatic Base-Ported Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/Ni particle counter (APC) calik	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on 100 psi terminal pressure		ressure	

2/9

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

Element Nominal Dimensions:

Element Collapse Rating:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

150 psid (10 bar) for standard elements

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Hydrostatic Base-Ported Filter KFH50

Pressure

Drop Information

Based on Flow Rate and Viscosity

 $\Delta P_{\text{housing}}$ KFH50 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 ΔP_{ele}

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

Exercise:

Determine ΔP_{mer} at 30 gpm (113.7 L/min) for KFH501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 9 psi (.62 bar) on the graph for the KFH50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 1.5 psi (.10 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 9 \text{ psi } [.62 \text{ bar}] | \Delta P_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 9 \text{ psi} + (1.5 \text{ psi} * 1.1) = 10.7 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = .62 \text{ bar} + (.10 \text{ bar} * 1.1) = .73 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

KFH50

Hydrostatic Base-Ported Filter

Filter	How to Build a Valid Mo	del Number for	a Schroeder KFH50:	
Model	BOX 1 BOX 2 BOX 3	BOX 4 BO	X 5 BOX 6 BOX 7 BOX 8 BOX 9	
Number				
Selection	Example: NOTE: Only box 6 may BOX 1 BOX 2 BOX 3			
	KFH50 – 1 – KZ5			KFH501KZ5SD5G509
	BOX 1 BOX 2		BOX 3	BOX 4
	Filter Number		Element Part Number	
	Elements			Seal Material
	KFH50 1 2	K KK Length Length	27K Length	Omit = Buna N
	3	K3 KK3	$27K3 = 3 \mu\text{E}\text{media}(\text{cellulose})$	V =Viton°
		K10 KK10	$27K10 = 10 \mu \text{E} \text{ media} \text{ (cellulose)}$	H = EPR
		K25 KZ1 KKZ1	= 25 μ E media (cellulose) 27KZ1 = 1 μ Excellement [®] Z-Media [®] (synthetic)	H.5 = Skydrol [®] compatibility
		KZ3 KKZ3	$27KZ3 = 3 \mu$ Excellement [*] Z-Media [*] (synthetic)	
		KZ5 KKZ5	27KZ5 = 5 μ Excellement [*] Z-Media [*] (synthetic)	BOX 5
		KZ10 KKZ10	27KZ10 = 10 μ Excellement Z-Media (synthetic)	Porting
		KZ25 KKZ25 KZW1	27KZ25 = 25 μ Excellement [*] Z-Media [*] (synthetic) = 1 μ Aqua-Excellement [*] ZW media	P = 1½" NPTF
		KZW3 KKZW3	= 3 μ Aqua-Excellement [™] ZW media	S = SAE-24
		KZW5 KKZW5	= 5 µ Aqua-Excellement [™] ZW media	$F = 1\frac{1}{2}$ " SAE 4-bolt
		KZW10 KKZW10	= 10 μ Aqua-Excellement [®] ZW media	flange Code 62
		KZW25 KKZW25 KW KKW	= 25 μ Aqua-Excellement [®] ZW media 27KW = W media (water removal)	O = Subplate
		KM10	= K size 10μ M media (reusable metal)	B =ISO228G-1½"
		KM25	= K size 25 μ M media (reusable metal)	D = 100 220 G 1/2
		KM60	= K size 60 μ M media (reusable metal)	
		KM150 KM260	= K size 150 μ M media (reusable metal) = K size 260 μ M media (reusable metal)	
	BOX 6		BOX 8	
	Bypass		Dirt Alarm [®] Options	
	Omit = 40 PSI Bypass	None	Omit= None	
	50 = 50 PSI Bypass		D = Pointer	
		Visual	D5 = Visual pop-up D5C = D5 in cap	
NOTES:	BOX 7		D9 = All stainless D5	
Box 2. Number of elements must	Test Points	Visual with Thermal	D8 = Visual w/ thermal lockout D8C = D8 in cap	
equal 1 when using KK	Omit = None	Lockout	MCE Electrical w/12 in 19 course 4 cons	
or 27K elements.	L = Two ¼" NPTF inlet and		MS5 = Electrical w/ 12 in. 18 gauge 4-conc MS5LC = Low current MS5	luctor cable
Box 3. Replacement element part	outlet female test ports		MS10 = Electrical w/ DIN connector (male e	nd only)
numbers are identical to contents	U = Series 1215 % UNF Schroeder Check Test		MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire	,
of Boxes 3 and 4. Double and triple stacking	Point installation in cap	Electrical	MS12 = Electrical w/ 5 pin Brad Harrison co	
of K-size elements can be	(upstream) UU = Series 1215 % UNF		MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed	d connector
replaced by single KK and 27K elements, respectively.	Schroeder Check Test		MS16LC = Low current MS16	
ZW media not available in 27K length.	Point installation in block (upstream and		MS17LC = Electrical w/ 4 pin Brad Harrison ma MS5T = MS5 (see above) w/ thermal lockou	
-	downstream)		MS5LCT = Low current MS5T	
Box 4. H.5 seal designation includes the		Electrical	MS10T = MS10 (see above) w/ thermal locko MS10LCT = Low current MS10T	ut
following: EPR seals, stainless steel wire mesh		with Thermal	MS12T = MS12 (see above) w/ thermal locko	ut
on elements, and light oil		Lockout	MS12LCT = Low current MS12T	+
coating on housing exterior. Viton® is a registered			MS16T = MS16 (see above) w/ thermal locko MS16LCT = Low current MS16T	ut
trademark of DuPont Dow	DOV 0		MS17LCT = Low current MS17T	témala comti
Elastomers. Skydrol° is a registered	BOX 9	Electrical	MS = Cam operated switch w/ ½" condui MS13DC = Supplied w/ threaded connector &	
trademark of Solutia Inc.	Additional Options	Visual	MS14DC = Supplied w/ 5 pin Brad Harrison con	nector & light (male end)
Box 5. For option F, bolt depth	Omit = None	Electrical Visual with	MS13DCT = MS13 (see above), direct current, w. MS13DCLCT = Low current MS13DCT	/ thermal lockout
.75" (19 mm). For option O, O-rings included; hardware	G509 = Dirt alarm and drain	Thermal	MS14DCT = MS14 (see above), direct current, w	/ thermal lockout
not included.	opposite standard	Lockout	MS14DCLCT = Low current MS14DCT	

NOTES:

132 SCHROEDER INDUSTRIES

	In-Line Filter	LC60	NF30
	 Features and Benefits (LC60) Compact design allows for in-line installation. Small profile allows filter to be mounted in tight areas. Quick and easy cartridge element change outs. Durable, compact design. Uses 10 micron stainless steel wire mesh filtration. Perfect for pilot pressure circuits and pressure compensated pump protection. 	8 gpm <u>30 L/min</u> 6000 psi 415 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60
Model No. of filter in photograph is Flow Rating: Max. Operating Pressure:	LC601SSD10S. Up to 8 gpm (30 L/min) for 150 SUS (32 cSt) fluids 6000 psi (414 bar)	Filter Housing	VF60 LW60
Min. Yield Pressure:	18000 psi (1241 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	6000 psi (414 bar), per NFPA T2.6.1		KF30
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KF50
Porting Head: Element Case:	Steel Steel		TF50
Weight:	0.93 lbs. (0.42 kg)		KC50
Element Change Clearance:	2.50" (63.5 mm)		MKF50
Type Fluic	Appropriate Schroeder Media	Fluid	
Petroleum Based Fluids		Compatibility	MKC50
Invert Emulsions			KC65
Water Glycols	s 10 μ Stainless Steel Wire Mesh		MKC65
			HS60
			MHS60
			KFH50
<u> </u>			LC60
			LC35
			LI50
			LC50
			NOF30-05
¥ \	\backslash \Box \downarrow \uparrow		
	9/16-18UNF-2B(SAE-06)		NOF-50-760
	CORING PORT (BOTH SIDES)		FOF60-03
			NMF30
			RMF60
Metric dimensions in ().			14-CRZX10
	meters) for general information and overall envelope size only. ntact Schroeder Industries to request a certified print.		

LC60

In-Line Filter

	In-Line Filter	LC35	NF30
	 Features and Benefits (LC35) Compact design allows for in-line installation. Small profile allows filter to be mounted in tight areas. Quick and easy cartridge element change outs. Durable, compact design. Uses 10 or 40 micron Sintered Bronze filtration. Perfect for pilot pressure circuits and pressure compensated pump protection. 	15 gpm <u>57 L/min</u> 3500 psi 241 bar	NFS30 YF30 - CFX30 PLD CF40 DF40 PF40 RFS50 RF60 CF60 CTF60
Max. Operating Pressure: 3500 psi (241 bar	ar), per NFPA T2.6.1), per NFPA T2.6.1 9°C to 107°C)	Filter Housing Specifications	VF60 LW60 KF30 KF50 TF50 KC50 MKF50
Type Fluid Appropriate S Petroleum Based Fluids All Sintered Br Invert Emulsions 10 and 40 μ Si Water Glycols 10 and 40 μ Si 0 2.00 0 0 0 0 0 0	ntered Bronze	Fluid Compatibility	MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35 LI50
·	.562-18UNF-2B (S6) SAE STRAIGHT THREAD O-RING PORT (TYPICAL IN AND OUT PORTS)	N	NOF30-05 OF-50-760 FOF60-03 NMF30 RMF60

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

In-Line Filter

In-Line Filter LI50

Features and Benefits

- In-line pressure filter
- Designed for high pressure last chance protection
- Available with indicator, which is unique for in-line filters of this kind.
- Cap handles provide for easy element changeout

35 gpm <u>130 L/min</u> 5000 psi 345 bar

Model No. of filter in photograph is LI50IZ10SMS13DC.

	Flow Rating:	35 gpm (130 L/min)	Filter
Max. Operating Pressure:		5000 psi (345 bar)	Housing
	Min. Yield Pressure:	300 psi (21 bar), per NFPA T2.6.1	Specifications
	Rated Fatigue Pressure:	Contact Factory	
	Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
	Bypass Setting:	Cracking: 50 psi (3.4 bar) Full Flow: 55 psi (3.8 bar)	
	Housing: Cap:	Ductile Iron Steel	
	Weight:	10.0 lbs. (4.5 kg)	
	Element Change Clearance:	7.1 (178 mm)	

Petroleum Based Fluids Z-Media [®] and ASP [®] media (synthetic) Compatibility	
Compatibility Compatibility Compatibility	lity
High Water Content All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions 10 and 25 μ Z-Media [*] and 10 μ ASP [*] media (synthetic)	
Water Glycols $3, 5, 10$ and 25μ Z-Media and all ASP media (synthetic)	
Phosphate Esters All Z-Media [*] (synthetic) with H (EPR) seal designation and all ASP [*] media (synthetic)	

LI50

In-Line Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		Per ISO 4572/NFP			o per ISO 16889 ated per ISO 11171
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
IZ1	<1.0	<1.0	<1.0	<4.0	4.2
IZ3	<1.0	<1.0	<2.0	<4.0	4.8
IZ5	2.5	3.0	4.0	4.8	6.3
IZ10	7.4	8.2	10.0	8.0	10.0
IZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	
IZ1	8.3	
IZ3	7.1	
IZ5	7.9	
IZ10	7.0	
IZ25		
	Element Collapse Rating:	290 psid
	Flow Direction:	Inside Out
	Element Nominal Dimensions:	2.04″ OD x (52mm OD x 155 mm long)

6.12″ long

In-Line Filter

LI50

 $\Delta P_{\text{element}}$ IZ

Pressure Drop Information Based on Flow Rate and Viscosity

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 200 gpm (758 L/min) for LI50IZ10SMS13DC using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 35 gpm. In this case, $\Delta P_{\text{housing}}$ is 19 psi (1.31 bar) on the graph for the LI50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 35 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the IZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{tenser} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{denser}} * V_{f}$). The ΔP_{denser} from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 19 \text{ psi} [1.31 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 2 \text{ psi} + (7 \text{ psi} * 1.1) = 9.7 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = 1.31 \text{ bar} + (.48 \text{ bar} * 1.1) = 1.84 \text{ bar}$

In-Line Filter

Filter Model Number Selection

LI50

BOX 1	BOX 2	BOX 3 B	OX 4 BOX 5	_
LI50		_	_	
				J
Example: N	OTE: One opt	ion per box		
BOX 1	BOX 2 BC	DX 3 BOX 4	BOX 5	
LI50 –	IZ10 –	– S -	- MS13DC	= LI50IZ10SMS13DC

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Part Number	Seal Material	Porting	Indicator
LI50	IZ1 IZ3	Omit = Buna	S = SAE12	MS13DC = MS13DC indicator
	IZ5			
	IZ10			
	IZ25			

In-Line Filter	LC50
 Features and Benefits Compact design allows for in-line installation on hose reels High quality synthetic ZX-Media high collapse elements ensure all fluid is filtered Available with SAE or NPT threading Convenient 2 ¼" Hex for easy service 	9 gpm УF30 35 L/min СFX30 5000 psi PLD 345 bar СF40 DF40 PF40 RF550 RF60 CF60 CF60
Model No. of filter in photograph is LC501LZX10S.Flow Rating:Up to 9 gpm (35 L/min) for 150 SUS (32 cSt) fluidsMax. Operating Pressure:5000 psi (350 bar)Min. Yield Pressure:15,000 psi (1050 bar)Rated Fatigue Pressure:5000 psi (350 bar), per NFPA T2.6.1-R1-2005Temp. Range:-20°F to 225°F (-29°C to 107°C)Body and Cap:SteelElement Case:SteelWeight of LC50:3.63 lbs. (1.65 kg)Element Change Clearance:3.25" (83 mm)	CTF60 Filter VF60 Housing Specifications LW60 KF30 KF50 TF50 KC50
Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All Z-Media" (synthetic) High Water Content All Z-Media" (synthetic) Invert Emulsions 10 and 25 μ Z-Media" (synthetic) Water Glycols 10 and 25 μ Z-Media" (synthetic) $\frac{4.53}{[115]}$ $\frac{4.53}{[100]}$ $\frac{2.25}{[57]}$	Fluid Compatibility MKC50 KC65 MKC65 HS60 MHS60 KFH50 LC60 LC35
OUT Interview OUTLET Interview 11/16-12UNC-2B SAE STRAIGHT THREAD SAE STRAIGHT THREAD SAE STRAIGHT THREAD (S12) Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.	LI50 LC50 NOF30-05 NOF-50-760 FOF60-03 NMF30 RMF60 14-CRZX10

LC50

In-Line Filter

High-Pressure Sandwich Filter NOF30-05

	 Features and Benefits Sandwich filter configured for D05 subplate Withstands high pressure surges, high static pressure loads 3000 psi collapse elements 	12 gpm <u>45 L/min</u> 3000 psi 210 bar	NFS30 YF30 - CFX30 PLD CF40 DF40 PF40 RFS50
Model No. of filter in photograph	is NOF301NNZX305D5.		RF60 CF60 VF60 LW60 KF30 KF50 TF50 KC50
Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range:	10,000 psi (690 bar), per NFPA T2.6.1	Filter Housing Specifications	MKF50 MKC50 KC65 MKC65 HS60 MHS60
Porting Base & Cap: Element Case: Weight of NOF30-1NN: Element Change Clearance:	Aluminum 6.6 lbs. (3.0 kg)		KFH50 LC60 LC35 LI50
Type Fl Petroleum Based Flu High Water Cont Invert Emulsie	idsAll Z-Media* (synthetic)ent3, 10 and 25 μ Z-Media* (synthetic)	Fluid Compatibility	LC50 NOF30-05 NOF-50-760 FOF60-03
Water Glyc			NMF30 RMF60

NOF30-05 High-Pressure Sandwich Filter

Element	DHC (gm)		
NNZX3	11*		
NNZX10	13*		*Based on 100 psi
Element Collapse Rating:		3000 psid (210 bar) for high collapse (ZX) versions	terminal pressure
Flow Direction:		Outside In	
Element N	Iominal Dimensions:	1.75" (45 mm) O.D. x 8.00" (200 mm) long	

5.8

9.8

Element Performance Information & Dirt Holding Capacity

High-Pressure Sandwich Filter NOF30-05

$\Delta P_{housing}$ NOF30-05 $\Delta P_{housing}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{element}$ 1NNZX

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{mer} at 5 gpm (19 L/min) for NOF301NNZX1005D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the NNZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{filter}} = 5 \text{ psi} + (3 \text{ psi} * 1.1) = 8.3 \text{ psi}$ \underline{OR}

 $\Delta P_{\text{filter}} = .34 \text{ bar} + (.21 \text{ bar} * 1.1) = .57 \text{ bar}$

High-Pressure Sandwich Filter NOF30-05

Filter Model Number Selection	BOX 1 BOX 2 NOF30	BOX 3 BO BOX 3 BO INZX3 -	X 4 BOX 5 BOX 6 BOX 7	NNZX305D5 BOX 4	BOX 5
	Filter Num		Element Part Number	Seal Material	Porting
	Series & Size				
	Eleme	Ints NI	NZX3 = NN size 3 μ high collapse media	Omit = Buna N	05 = D05
	NOF30 1	NN	ZX10 = NN size 10 μ high collapse media	V = Viton*	subplate pattern
		NN	ZX25 = NN size 25 μ high collapse media	W = Buna N	pattern
	BOX 6		BOX 7		
	Options		Dirt Alarm [®] Options		
	Omit = None	None	Omit = None		
		Visual	D5 = Visual pop-up		
		Visual	D8 = Visual w/ thermal lockout		
		with Thermal			
		Lockout			
		Electrical	MS5 = Electrical w/ 12 in. 18 gauge MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conduct MS12 = Electrical w/ 5 pin Brad Harris MS12LC = Low current MS12 MS16 = Electrical w/ weather-packee MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harris	(male end only) tor wire son connector (male er d sealed connector ison male connector	nd only)
		Electrical with Thermal Lockout Electrical Visual with Thermal Lockout	MS5T = MS5 (see above) w/ thermal MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ therma MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ therma MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ therma MS16LCT = Low current MS16T MS17LCT = Low current MS17T MS13DC = Supplied w/ threaded conn MS14DC = Supplied w/ 5 pin Brad Harriss MS13DCLCT = Low current MS13DCT MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct cur MS14DCT = Low current MS14DCT	al lockout al lockout al lockout ector & light on connector & light (m rrent, w/ thermal locko	ut

uto Build a Valid Model Number for a Schroeder NOE30-05

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. For options V and W, all aluminum parts are anodized. Viton^{*} is a registered trademark of DuPont Dow Elastomers.

High-Pressure Servo Sandwich Filter NOF50

NF30

Model No. of filter in photograph is NO	 Features and Benefits Localized protection at the servo helps to eliminate downtime and protect critical applications from contamination-related servo valve failures Sandwich style 4-bolt design - no additional lines to connect Designed to protect these commonly installed servo valves: Moog 761 & 62, Vickers SM4-20 and Parker BD15 High collapse elements, rated to 3000 psi (210 bar) Easily applied to new and existing systems All steel construction 	15 gpm 57 L/min 5000 psi 345 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CTF60 VF60 LW60 KF30 KF50 TF50 KC50 MKF50
Flow Rating:	Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids	Filter	MKC50
Max. Operating Pressure:	5000 psi (345 bar)	Housing	KC65
Min. Yield Pressure:	15,000 psi (1034 bar), per NFPA T2.6.1	Specifications	MKC65
Rated Fatigue Pressure: Temp. Range:	4000 psi (276 bar) per NFPA T2-6.1 R2-2005		HS60
Non-Bypass Model:	-20°F to 225°F (-29°C to 107°C) Standard with high collapse elements		MHS60
Porting Head: Element Case:	Steel Steel		KFH50
Weight of NOF50-1SV:	17 lb. (7.7 kg)		LC60
Element Change Clearance:	4.50" (115 mm)		
			LC35 LI50 LC50
The second s	Appropriate Schroeder Media	Fluid	NOF30-05
Type Fluid Petroleum Based Fluids	Appropriate Schroeder Media All Z-Media [®] (synthetic)		NOF-50-760
High Water Content	3, 10 and 25 μ Z-Media [°] (synthetic)	. ,	FOF60-03
Invert Emulsions	10 and 25 μ Z-Media [*] (synthetic)		
Water Glycols	3, 10 and 25 μ Z-Media [®] (synthetic)		NMF30
			RMF60
			14-CRZX10

NOF50

High-Pressure Servo Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		Ratio Per ISO 4572/NF d particle counter (APC) cali		o per ISO 16889 Ited per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
SVZX3	<1.0	<1.0	<2.0	4.7	5.8
SVZX10	7.4	8.2	10.0	8.0	9.7

Element	DHC (gm)		
SVZX3	11*		
SVZX10	13*		*D 100 '
	Element Collapse Rating:	3000 psid (210 bar) for high collapse (ZX) versions	*Based on 100 psi terminal pressure
	Flow Direction:	Outside In	
Eler	ment Nominal Dimensions:	1.75" (45 mm) O.D. x 8.0" (200 mm) long	

High-Pressure Servo Sandwich Filter

NOF5C

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{bousing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{mer} at 5 gpm (19 L/min) for NOF501SVZX10760D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the SVZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{densert}} * V_{f}$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 15 \text{ psi} [1 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$

NOF50

High-Pressure Servo Sandwich Filter

Filter		a Valid Model Number for a Schroeder NOF50:	
Model	вох 1 вох NOF50 –	X 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8	
Number	Example: NOTE: O		
Selection	BOX 1 BOX		
	NOF50 - 1	– SVZX3 – – 760 – – D5 = NOF501	SVZX3760D5
	BOX 1	BOX 2 BOX 3 BOX 4	BOX 5
	Filter N Series I	lumber of Element Part Number Seal Material	Porting
			760 = Moog servo
	NOF50	SVZX10 = S size 10 μ high collapse media V = Viton*	configuration
			761 = Moog servo
	BOX 6	BOX 7	configuration
		Optional	
	Options	Test Point	
	Omit =60		
	90 = 90	psid U = Series 1215%"-20 UNF Schroeder Check Test Point	
		installation	
		BOX 8	
		Dirt Alarm [*] Options	
	None	Omit= None	
	Visual	D5 = Visual pop-up	
	Visual with	D8 = Visual w/ thermal lockout	
	Thermal Lockout		
		MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	
		MS5LC = Low current MS	
		MS10 = Electrical w/ DIN connector (male end only)	
		MS10LC = Low current MS10	
	Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire	
		MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	
		MS12LC = Low current MS12	
		MS16 = Electrical w/ weather-packed sealed connector	
		MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
		MST = MS5 (see above) w/ thermal lockout	
		MS5LCT = Low current MS5T	
		MS10T = MS10 (see above) w/ thermal lockout	
NOTES:	Electrical with	MS10LCT = Low current MS10T	
Box 3. Replacement element part	Thermal	MS12T = MS12 (see above) w/ thermal lockout	
numbers are identical to	Lockout	MS12LCT = Low current MS12T	
of Boxes 3 and 4.		MS16T = MS16 (see above) w/ thermal lockout	
Box 4. Viton [°] is a registered		MS16LCT = Low current MS16T	
trademark of DuPont Dow Elastomers.		MS17LCT = Low current MS17T	
	Electrical Visual	MS13 = Supplied w/ threaded connector & light	
Box 6. Please note indicator flow limitations on pressure drop	visual	MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
graph, previous page.	Electrical	MS13DCLT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT	
	Visual with Thermal	MS15DCCCT = MS14 (see above), direct current, w/ thermal lockout	
	Lockout	MS14DCLCT = Low current MS14DCT	

150 SCHROEDER INDUSTRIES

High-Pressure Sandwich Filter FOF60-03

Kodel No. of filter in photograph is FOF601F	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	12 gpm <u>45 L/min</u> 6000 psi 415 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RFS50 RF60 CF60 CF60 CTF60 VF60 LW60 KF30 KF50 KF50 KC50 MKF50
Flow Rating:	Up to 12 gpm (45 L/min) for 150 SUS (32 cSt) fluids	Filter	MKC50 KC65
Max. Operating Pressure:	6000 psi (415 bar)	Housing Specifications	
Min. Yield Pressure:	26,000 psi (1790 bar), per NFPA T2.6.1	specifications	MKC65
Rated Fatigue Pressure: Temp. Range:	4000 psi (275 bar), per NFPA T2.6.1 -20°F to 225°F (-29°C to 107°C)		HS60
Non-Bypass Model:	Available with high collapse elements		MHS60
Porting Head:	Steel		
Element Case: Weight:	Steel 7.3 lbs. (3.3 kg)		KFH50
Element Change Clearance:	4.50" (115 mm)		LC60
		-	LC35
			LI50
			LC50
			NOF30-05
	propriate Schroeder Media	Fluid Compatibility	
	Z-Media" (synthetic) nd 10 μ Z-Media" (synthetic)	compationity	NOF-50-760
			FOF60-03
			NMF30
			RMF60
			14-CRZX10

FOF60-03 High-Pressure Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NFP particle counter (APC) calibr		o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\hat{B}_{x}^{(c)} \geq 1000$
FZX3	<1.0	<1.0	<2.0	4.7	5.8
FZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)		
FZX3	3*		
FZX10	5.1		
	Element Collapse Rating:	3000 psid (210 bar) for high collapse (ZX) versions	
	Flow Direction:	Outside In	
Ele	ment Nominal Dimensions:	1.25" (30 mm) O.D. x 3.25" (85 mm) long	*Based on 100 psi terminal pressure

High-Pressure Sandwich Filter FOF60-03

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{env} = \Delta P_{vorten} + (\Delta P_{elevent} * V_{el})$$

Exercise:

Determine ΔP_{filter} at 5 gpm (19 L/min) for FOF601FZX1003BD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 60 psi (4.1 bar) on the graph for the FOF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{stement}}$ at 5 gpm. In this case, $\Delta P_{\text{stement}}$ is 22 psi (1.5 bar) according to the graph for the FZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 60 \text{ psi} [4.1 \text{ bar}] | \Delta P_{\text{element}} = 22 \text{ psi} [1.5 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 60 \text{ psi} + (22 \text{ psi} * 1.1) = 64.2 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = 4.1 \text{ bar} + (1.5 \text{ bar} * 1.1) = 5.8 \text{ bar}$

High-Pressure Sandwich Filter

How to Build a Valid Model Number for a Schroeder FOF60-03: Filter BOX 4 BOX 5 BOX 6 BOX 1 BOX 2 BOX 3 BOX 7 Model FOF60 Number Example: NOTE: One option per box Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 FOF60 FZX3 03 A D5 = FOF601FZX303AD5 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 1 Number of Filter **Element Part Number** Seal Material Porting **Elements** Series 03 = D03 subplate Omit = Buna N 1 FZX3 = F size 3 μ high collapse media FOF60 pattern FZX10 = F size 10 μ high collapse media V = Viton[®] BOX 7 BOX 6 Filter Bowl Dirt Alarm[®] Options Location A = Bowl adjacent Omit = None None to Port "A" Visual D5 = Visual pop-up B = Bowl adjacent Visual with D8 = Visual w/ thermal lockout to Port "B" Thermal Lockout (Refer to drawing on page 140.) MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Flectrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T Electrical with Thermal MS12T = MS12 (see above) w/ thermal lockout Lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T MS13 = Supplied w/ threaded connector & light Electrical Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical MS13DCLCT = Low current MS13DCT Visual with Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout Lockout MS14DCLCT = Low current MS14DCT

NOTES:

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.

60-03

- Box 4. Viton[°] is a registered trademark of DuPont Dow Elastomers.
- Box 7. Dirt Alarm[°] cannot be used beyond 4 gpm. Filters ordered without a Dirt Alarm do not include a machined indicator port. Therefore, one cannot be added at a later date.

Manifold Filter Kit NMF30

Model No. of filter in photograph is NMF301N	Features and Benefits Allows for effective filtration in customer's manifold 	20 gpm <u>75 L/min</u> 3000 psi 210 bar	NFS30 YF30 - CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CTF60			
Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter	VF60			
Max. Operating Pressure:	3000 psi (210 bar)*	Housing	LW60			
Min. Yield Pressure: Rated Fatigue Pressure:	10,000 psi (690 bar)*, per NFPA T2.6.1 2400 psi (185 bar)*, per NFPA T2.6.1	Specifications	KF30			
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KF50			
Element Case:	Aluminum					
Element Change Clearance:	4.50" (115 mm)		TF50			
*Only with manifold material properties equi	Valent to aluminum 6061-1651.	-	KC50			
Type Fluid		Fluid Compatibility	MKF50			
Petroleum Based Fluids High Water Content		Compatibility	MKC50			
		2	KC65			
			MKC65			
	CUSTOMER SUPPLIED MANIFOLD		HS60			
			MHS60			
			KFH50			
			LC60			
			LC35			
BACKUP RING -	8.17 (206)		LI50			
			LC50			
			NOF30-05			
BOWL \rightarrow						
F						
			RMF60			
	for general information and overall envelope size only. hroeder Industries to request a certified print.		14-CRZX10			

SCHROEDER INDUSTRIES 155

NMF30 Manifold Filter Kit

Element Performance Information & Dirt	Element			er (APC) calibrated per ISO 4402 Using			Filtration Ratio per ISO 16889Using APC calibrated per ISO 11171 $\beta_{c}(c) \ge 200$ $\beta_{c}(c) \ge 1000$	
Holding Capacity	NNZX3	<1.0	<1.0) <2	.0	4.7	5.8	11*
5 1 7	NNZX10	7.4	8.2	2 10	.0	8.0	9.8	13*
	Element	D	PHC (gm)					
	NNZX3		11*					
	NNZX10		13*					
	Elem	Element Collapse Flow D nent Nominal Dim	irection:	3000 psid (210 k Outside In 1.75" (45 mm) O		' (200 mm) long		

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. For options V and W, all aluminum parts are anodized. Viton[®] is a registered trademark of DuPont Dow Elastomers.

	Manifold Filter Kit	RMF60	NF30
	Features and Benefits Allows for effective filtration in customer's manifold 	30 gpm <u>115 L/min</u> 6000 psi 415 bar	NFS30 YF30 - CFX30 PLD CF40 DF40 PF40 RFS50 RF60 CF60
odel No. of filter in photograph is RMF608	RZX10.		CTF60
Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	VF60
Max. Operating Pressure:	6000 psi (415 bar)*	Housing	LW60
Min. Yield Pressure:	18,000 psi (1240 bar)*	Specifications	KF30
Rated Fatigue Pressure:	2300 psi (159 bar)*		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KF50
Element Case: Element Change Clearance:	Steel 3.0" (75 mm)		TF50
Only with manifold material properties eq Type Fluid	uivalent to AISI 1018 C.R.S.	Fluid	KC50 MKF50
Petroleum Based Fluids		Compatibility	MKC50
High Water Content	•		KC65
			MKC65
			HS60 MHS60
			KFH50
\mathbb{A}			LC60
	SUPPLIED MANIFOLD		
			LC35
			LI50
BACKUP RING			LC50
			NOF30-05
501		Ν	IOF-50-760
BOW		Ν	
BOW		Ν	FOF60-03
BOW		Ν	IOF-50-760 FOF60-03 NMF30
BOW		Ν	FOF60-03
etric dimensions in ().			FOF60-03 NMF30

RMF60 Manifold Filter Kit

Element Performance				4572/NFPA T3.10.8.8 (APC) calibrated per ISO 4402			
Information & Dirt	Element	ß _∗ ≥ 75	$\beta_x \ge 10$	$\beta_{x} \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
Holding Capacity	NNZX3	<1.0	<1.0	<2.0	4.7	5.8	
5	NNZX10	7.4	8.2	10.0	8.0	9.8	
	Element	DHe	C (gm)				
	Elem	Element Collapse F Flow Dire ent Nominal Dimer	ection: (3000 psid (210 bar) Outside In 2.18" (55mm) O.D. x 8.15"	(206 mm) long		

NOTES:

Box 2: Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 8RZX3V

Box 4. Viton[°] is a registered trademark of DuPont Dow Elastomers.

Cartridge Element 14-CRZX10

		 Cartridge filte in the manifo 	igh pressure surges-3	mounted directly		6 gpm <u>23 L/min</u> 3000 psi 210 bar	NFS30 YF30 — CFX30 PLD CF40 DF40
	Max. Operating Pres Temp. Ra		210 bar) 25°F (-29°C to 107°C)			Filter Housing	DF40 PF40
	Element Change Clear		0: 4.50" (115 mm)			Specifications	RFS50
	Type Fluic	Appropriato S	chroeder Media			Fluid	
	Petroleum Based Fluids					Compatibility	RF60
	High Water Content	: 3 and 10 μ Z-M	ledia [®] (synthetic)				CF60
	O-RING BOSS PL	.UG 2	.43 [61.7] .39 [60.7]		A	Element	CTF60
	O-RING BOSS PL (OPTIONAL) P/N A-601-14					Performance Information &	VF60 Dirt
				01100 10100 10100 10100 10100	DATE CODE	Holding Capa	
	<_ + · \$F			0.998 [25.10]			KF30
				° 14-0	RZX19		KF50
		2.82 2.76	71.6		A		TF50
		3.20 3.13	[81.3 79.5]	Ø 1.08 1.079	27.46		KC50
Metric dimen	sions in ().	SECTION A	λ-A				MKF50
	hown are inches (millimet dimensions please contac						МКС50
		io Per ISO 4572/NF			io per ISO 16889		KC65
Element	$\beta_x \ge 75$	rticle counter (APC) calil $\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	rated per ISO 11171 $\hat{B}_{x}(c) \geq 1000$		MKC65
ZX10	7.4	8.2	10.0	8.0	9.8		HS60
Contact factor	y for other media options						MHS60
Element	DHC (gm)					KFH50
E	Element Collapse Rating) bar) for high collapse (ZX) versions			LC60
Eleme	Flow Direction nt Nominal Dimensions						LC35
							L150
How to Build	d a Valid Model Nur	nber for a Schro	beder 14-CRZX10:			Filter Model	LC50
14-CRZX1	0 –					Number	NOF30-05
Example: NOTE BOX 1	: One option per box BOX 2					Selection	NOF-50-760
14-CRZX1	0 – P = 14-C	RZX10P		NOTES:			FOF60-03
BOX 1	BOX 2				placement element rt numbers are a		NMF30
Filter Series	Number of Eler	nents		co	mbination of Boxes 2, 3, d 4. Example: 8RZX3V		RMF60
14-CRZX10	Omit = No P = Plu	5		tr	ton [°] is a registered ademark of DuPont ow Elastomers.		14-CRZX10

SCHROEDER INDUSTRIES 159

20-CRZX10 Cartridge Element

Section 4 Medium Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported Medium Pi	ressure Return L	ine Filters		
	GH QUALITY	725 (50)	35 (130)	6G, 9G	163
	<u>RLT</u>	1400 (97)	70 (265)	9V, 14V	169
(isd)	KF5 QUALITY	500 (35)	100 (380)	К	173
500	<u>SRLT</u>	1400 (100)	25 (100)	6R	177
to 1	Base-Ported Medium F	Pressure Filters			
dn)		900 (60)	100 (380)	K, KK, 27K	181
	2K9 QUALITY	900 (60)	100 (380)	К, КК, 27К	185
Filters	3K9 QUALITY	900 (60)	100 (380)	К, КК, 27К	185
	<u>QF5</u>	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	189
Pressure	<u>QF5i</u>	500 (35)	120 (454)	16QCLQF, 39QCLQF	193
Pre	<u>2QF5</u>	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	197
m	<u>3QF5</u>	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	197
Medium	<u>QFD5</u>	500 (35)	350 (1325)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	201
2	<u>QF15</u>	1500 (100)	450 (1700)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	205
	<u>QLF15</u>	1500 (100)	500 (1900)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	209
	SSQLF15	1500 (100)	500 (1900)	16Q, 16QPML, 39Q, 39QPML	213

GH

GH

GH9

GH11

GH14

Model No. of filters in photograph are GH6, GH9, GH11, and GH14.

Features and Benefits

4

Features and Benefits	35-112 gpm GH
 Variety of differential indicator port options (visual and electrical indicators) 	130-425 I /min
Leak proof bar indicator, rugged visual indicator with protective aluminum shield is standard	500-725 psi
 Proprietary bowl to element seal - minimizes potential leakage point by use of one seal on element 	35-50 bar кғз
 Cartridge style element (non spin-on) that is proprietary and patented with integrated bypass valve features 	SRLT
 Wide variety of media grades that can be application specific 	
 Light weight bowl design with replaceable element minimizes landfill waste 	K9
 Mounting interchangeability with competitor's filter head 	2K9
The inherent capability to pre-print the perforated outer element wrap provides a branding solution that helps to capture after-market replacement element sales	3K9
 GH6 – Bolt up cartridge element replacement for the Donaldson DURAMAX HMK04 w/ 5.9" Spin-On Can 	QF5
 GH9 – Bolt up cartridge element replacement for the Donaldson DURAMAX HMK04 w/ 9.4" Spin-On Can 	QF5i
 GH11 – Bolt up cartridge element replacement for the Donaldson DURAMAX HMK05 w/ 11.6" Spin-On Can 	20F5/30F5
 GH14 – Bolt up cartridge element replacement for the Donaldson DURAMAX HMK05 w/ 14.3" Spin-On Can 	
Same day shipment model available (GH6 & GH9)	QFD5
Part of Schroeder Industries Energy Savings Initiative	0515

	GH6	GH9	GH11	GH14	Filter	
Flow Rating: (150 SUS (32 cSt) fluids)	Up to 35 gpm (130 L/min)	Up to 35 gpm (130 L/min)	Up to 87 gpm (325 L/min)	Up to 112 gpm (425 L/min)	Housing Specifications	QLF15
Max. Operating Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)		SSQLF15
Min. Yield Pressure:	2600 psi (179 bar)	2600 psi (179 bar)	2700 psi (186 bar)	2700 psi (186 bar)		
Rated Fatigue Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	-20°F to 225°F (-29°C to 107°C)	-22°F to 212°F (-30°C to 100°C)	-22°F to 212°F (-30°C to 100°C)		
Bypass Setting:	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing		
Porting Head:	Cast Aluminum	Cast Aluminum	Cast Aluminum	Cast Aluminum		
Element Case:	Aluminum	Aluminum	Aluminum	Aluminum		
Weight:	3.2 lbs (1.4 kg)	3.8 lbs (1.7 kg)	8.0 lbs (3.6 kg)	10.0 lbs (4.5 kg)		
Element Change Clearance:	2" (50 mm)	2" (50 mm)	7.4" (187 mm)	7.4" (187 mm)		

Type Fluid Petroleum Based Fluids Appropriate Schroeder Media

All media (synthetic) and H media (Hydraspin)

Fluid Compatibility

Metric dimensions in ().

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio p Using APC calibrate	
Media Type	Element	ն _X ≥ 75	ß _X ≥ 100	ß _X ≥ 200	ß _X (c) ≥ 200	β _X (c) ≥ 1000
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10	6.8 15.5	7.5 16.2	10.0 18.0	N/A N/A	N/A N/A
Traditional Excellement [*] Z-Media [*]	6GZ3 / 9GZ3 6GZ5 / 9GZ5 6GZ10 / 9GZ10 6GZ25 / 9GZ25	<1.0 2.5 7.4 18.0	<1.0 3.0 8.2 20.0	<2.0 4.0 10.0 22.5	<4.0 4.8 8.0 19.0	4.8 6.3 10.0 24.0
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/ 9GH10	N/A	N/A	N/A	10.6	13.0
Media Type	Element	DH	C (gm)			
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10		8/30 5/25			
Traditional 6GZ3 / 9GZ3 Excellement [*] 6GZ5 / 9GZ5 Z-Media [*] 6GZ10 / 9GZ10 6GZ25 / 9GZ25 6GZ25 / 9GZ25		24 3	0/51 .5/42 1/49 4/58			
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/9GH10	1.	2/20			
Element Collapse R	Element Collapse Rating: 250 psid (17.2 bar) for standard and non-bypassing elements					
Flow Dire	ection: Outside Ir	ı				
Element Nominal 6G: 3.25" (82 mm) O.D. x 5.7" (144 mm) long Dimensions: 9G: 3.25" (82 mm) O.D. x 9.0" (229 mm) long						

Element Performance Information & Dirt Holding Capacity

GH

Metric dimensions in ().

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Media Type	Element	ß _x ≥ 75	ß _X ≥ 100	ß _X ≥ 200	β _X (c) ≥ 200	β _X (c) ≥ 1000
Traditional Excellement Z-Media	11GZ3/14GZ3 11GZ5/14GZ5 11GZ10/14GZ10 11GZ25/14GZ25	<1.0 2.5 7.4 18.0	<1.0 3.0 8.2 20.0	<2.0 4.0 10.0 22.5	<4.0 4.8 8.0 19.0	4.8 6.3 10.0 24.0

Media Type	Element	DHC (gm)	
Traditional Excellement [®] Z-Media [®]	11GZ3/14GZ3 11GZ5/14GZ5 11GZ10/14GZ10 11GZ25/14GZ25	53/75 75/105 60/84 61/85	

Element Collapse Rating: 290 psid (17.2 bar) for standard and non-bypassing elements Flow Direction: Outside In

Element Nominal	11G: 3.7" (94 mm) O.D. x 7.6" (193 mm) long	
Dimensions:	14G: 3.7" (94 mm) O.D. x 11.1" (282 mm) long	

Element Performance Information & Dirt Holding Capacity

 $\Delta P_{housing}$

GH $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

GН

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for GH6GZ10S12L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (0.10 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 4 psi (0.27 bar) according to the graph for the 6GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element}^* V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Ele. ΔP Ele. ΔP 6G3 0.60 9G3 0.35 6G10 0.40 9G10 0.24 0.08 0.05 6G25 9G25 C/F 9GH10 C/F 6GH10 0.35 6GZ3 0.60 9GZ3 6GZ25 C/F 9GZ25 C/F

If your element is not graphed,

you can obtain your $\Delta P_{element}$ by

 $\Delta P_{element}$ Factors @ 150 SUS (32 cSt)

multiplying the flow rate by the following: $\Delta P_{element}$ Factors x VP (Visc. Factor)

Note:

Solution:

<u>OR</u>

 $\Delta P_{\text{housing}} = 1.5 \text{ psi} [0.10 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi} [0.27 \text{ bar}]$

$$V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1 \\ \Delta P_{filter} = 1.5 \text{ psi} + (4 \text{ psi} * 1.1) = 5.9 \text{ psi}$$

 $\Delta P_{filter} = 0.10 \text{ bar} + (0.27 \text{ bar} * 1.1) = 0.40 \text{ bar}$

$\Delta P_{\text{housing}}$

GH $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 60 gpm (227.4 L/min) for GH11GZ10S24VA using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 60 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (0.21 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 60 gpm. In this case, $\Delta P_{element}$ is 5 psi (0.34 bar) according to the graph for the 11GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [0.21 \text{ bar}] | \Delta P_{\text{element}} = 5 \text{ psi } [0.34 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{filter} = 3 \text{ psi} + (5 \text{ psi} * 1.1) = 8.5 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = 0.21 \text{ bar} + (0.34 \text{ bar} * 1.1) = 0.58 \text{ bar}$

Pressure Drop Information (GH11 & GH14) Based on Flow Rate and Viscosity

GH

Note:

If your element is not graphed, you can obtain your $\Delta P_{element}$ by multiplying the flow rate by the following: $\Delta P_{element}$ Factors @ 150 SUS (32 cSt)

Ele.	ΔΡ
11GZ3	0.21
11GZ25	0.06
14GZ3	0.14
14GZ25	0.04

GН

Model No. of filter in photograph is	<section-header></section-header>	70 gpm 265 L/min 1400 psi 97 bar	GH RLT KF5 SRLT K9 2K9 3K9 QF5 QF51 2QF5/3QF5
Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids for P20, S20, & B20 porting Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids for P16, S16, F16, F20 & B16 porting	Filter Housing Specifications	QF15
Max. Operating Pressure:	1400 psi (97 bar)	specifications	
	4200 psi (290 bar) , per NFPA T2.6.1		QLF15
-	415 psi (29 bar), per NFPA T2.6.1-R1-2005		
	-20°F to 225°F (-29°C to 107°C)		SSQLF15
Bypass Setting:	Cracking: 40 psi (2.8 bar) for all porting Full Flow: 57 psi (3.9 bar) for P20 & S20 porting Full Flow: 75 psi (5.2 bar) for P16, S16, F16 & F20 porting		
Porting Head:	Aluminum		
Element Case:	Aluminum		
Weight of RLT-9V:	6.7 lbs. (3.0 kg)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media [°] (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media * (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	
Skydrol*	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

Weight of RLT-14V: 8.0 lbs. (3.6 kg) Element Change Clearance: 9V & 14V: 2.75" (70 mm)

RLT

Medium Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			per ISO 16889 ed per ISO 11171
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_X \ge 200$	$\beta_X(c) \ge 200$	$\beta_X(c) \ge 1000$
9VZ1/14VZ1	<1.0	<1.0	<1.0	<4.0	4.2
9VZ3/14VZ3	<1.0	<1.0	<2.0	<4.0	4.8
9VZ5/14VZ5	2.5	3.0	4.0	4.8	6.3
9VZ10/14VZ10	7.4	8.2	10.0	8.0	10.0
9VZ25/14VZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
9VZ1	55	14VZ1	102	
9VZ3	57	14VZ3	105	
9VZ5	62	14VZ5	115	
9VZ10	52	14VZ10	104	
9VZ25	48	14VZ25	94	

Element Collapse Rating:

150 psid (10 bar) 500 psid (34.5 bar) for hydrostatic high collapse (9V5Z and 14V5Z) version Outside In

Flow Direction: Element Nominal Dimensions:

9V: 3.0" (75 mm) O.D. x 9.5" (240 mm) long 14V: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

$\Delta P_{housing}$

RLT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for RLT9VZ10S20D5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the RLT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 40 gpm. In this case, $\Delta P_{element}$ is 6 psi (.415 bar) according to the graph for the 9VZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4.5 \text{ psi} [.31 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

$$\begin{split} V_f &= 175 \text{ SUS } (37.2 \text{ cSt}) \ / \ 150 \text{ SUS } (32 \text{ cSt}) = 1.2 \\ \Delta P_{\text{filter}} &= 4.5 \text{ psi} + (4 \text{ psi} * 1.2) = 9.3 \text{ psi} \\ \underline{OR} \\ \Delta P_{\text{filter}} &= .31 \text{ bar} + (.27 \text{ bar} * 1.2) = .63 \text{ bar} \end{split}$$

Pressure Drop Information Based on Flow Rate and Viscosity

RL

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f. Plug this variable into the overall pressure drop equation.$

Ele.	ΔP	Ele.	ΔP
9V3	0.32	14V3	0.19
9V10	0.24	14V10	0.15

Filter	How to Buil	d a Valid	Model Nu	mber for a Schroeder RLT:	
Model		BOX 2	BOX 3 B	OX 4 BOX 5 BOX 6 BOX 7 BOX 8	
Number	RLT –				
Selection	Example: NOTE		1		
	BOX 1 B		вох з в /Z10 –	$A = \frac{BOX 5}{1} = \frac{BOX 5}{1} = \frac{BOX 6}{1} = \frac{BOX 7}{1} = \frac{BOX 8}{1} = \frac{BOX 8}{1$	Z10S20D5
Highlighted product eligible for	BOX 1	BOX 2		BOX 3	BOX 4
QuickDelivery	Filter Series	Eleme Length	nt (in)	Element Size and Media	Seal Material
		0	V	Z1 = V size 1 μ Excellement [°] Z-Media [°] (synthetic)	Omit = Buna N
	ріт	9	V	Z3 = V size 3 μ Excellement [°] Z-Media [°] (synthetic)	H = EPR
	RLT		V	Z5 = V size 5 μ Excellement [°] Z-Media [°] (synthetic)	$V = Viton^{\circ}$
		14	VZ	10 = V size 10 μ Excellement [®] Z-Media [®] (synthetic)	
			VZ	$Z25 = V \text{ size } 25 \ \mu \text{ Excellement}^* \text{ Z-Media}^* (\text{synthetic})$	H.5 = Skydrol [®] Compatibility
	RLTN		١	/W = V size W media (water removal)	
	(Non-bypassing:		V5	Z3 = V size 3 μ Excellement [*] media, 500 psid collapse	
	requires V5Z high collapse		V5	Z5 = V size 5 μ Excellement [°] media, 500 psid collapse	
	elements)		V5Z	$10 = V$ size 10 μ Excellement [°] media, 500 psid collapse	
			V5Z	$25 = V \text{ size } 25 \ \mu \text{ Excellement}^{\circ} \text{ media, } 500 \text{ psid collapse}$	
	WRLT			Water Service Element Options	
	(Water)		VMe	60 = V size 60 μ M media (reusable metal)	
			VM	150 = V size 150 μ M media (reusable metal)	
			VM	260 = V size 260 μ M media (reusable metal)	
	BOX 5			BOX 7	BOX 8
	Portin Option			Dirt Alarm [®] Options	Additional Options
	P16 = 1" NPT	F	None	Omit = None	Omit = None
	P20 = 1¼" NP	PTF	Visual	D5 = Visual pop-up	$L = Two \frac{1}{4}''$
	S16 = SAE-16	5		D8 = Visual w/ thermal lockout	NPTF inlet and outlet
	S20 = SAE-20			MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	female
	F20 = 1¼" SA 4-bolt	-		MS5LC = Low current MS5	test ports
	Code 6			MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10	
NOTES:	B16 = ISO 228	3 G-1"		MS11 = Electrical w/ 12 ft. 4-conductor wire	
	B20 = ISO 228	3 G-1¼"	Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	
Box 2. Replacement element part numbers are a combination	BOX 6			MS12LC = Low current MS12	
of Boxes 2, 3, and 4. Example: 9VZ10V	Bypas	s		MS16 = Electrical w/ weather-packed sealed connector	
Box 3. E media elements are	Omit = $40 P$			MS16LC = Low current MS16	
only available with Buna N seals.	Вура	ass		MS17LC = Electrical w/ 4 pin Brad Harrison	
V5Z10 and V5Z25 are only available with RLTN 9".	50 = 50 P			male connector MS5T = MS5 (see above) w/ thermal lockout	
	Byp 60 = 60 P			MSST = MSS(see above) w/ thermal foctout MSSLCT = Low current MSST	
Box 4. For options H, V, and H.5, all aluminum parts are	Byp	-	_	MS10T = MS10 (see above) w/ thermal lockout	
anodized. H.5 seal designation includes	x = Bloc	ked	Electrical with	MS10LCT = Low current MS10T	
the following: EPR seals, stainless steel wire mesh	Вур		Thermal	MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T	
on elements, and light oil	(Omit box 6 if a selected		Lockout	MS16T = MS16 (see above) w/ thermal lockout	
coating on housing exterior. Viton [®] is a registered		.,		MS16LCT = Low current MS16T	
trademark of DuPont Dow Elastomers.		-		MS17LCT = Low current MS17T	
Skydrol [®] is a registered			Electrical	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison	
trademark of Solutia Inc.			Visual	connector & light (male end)	
Box 5. B porting supplied with metric mounting holes.			Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
Box 6. When X is paired with			Visual with	MS13DCLCT = Low current MS13DCT	
a standard filter series, a standard bushing and			Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
spring plate will be used.			Lockout	MS14DCLCT = Low current MS14DCT	
17	2 SCHROEDER	INDUSTR	IES		

172 SCHROEDER INDUSTRIES

 Features and Benefits Meets HF4 automotive standard Offered in pipe, SAE straight thread, flange and ISO 228 porting Available with NPTF inlet and outlet female text a parts 	100 gpm <u>380 L/min</u> 500 psi <u>35 bar</u>	GH RLT KF5
 test ports KFN5 non-bypass version with high collapse elements also available 		SRLT
 Various Dirt Alarm options 		
 Allows consolidation of inventoried replacement elements by using K-size elements 		K9
 Also available with DirtCatcher[*] elements (KD & KKD) 		2K9
G Available with quality-protected GeoSeal [®] Elements (GKF5)		3K9
		QF5
		QF5i
	2QF	5/3QF5

		_	OF15
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	QETS
Max. Operating Pressure:	500 psi (35 bar)	Housing	
Min. Yield Pressure:	1500 psi (100 bar) , per NFPA T2.6.1	Specifications	QLF15
Rated Fatigue Pressure:	300 psi (35 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		SSQLF15
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar)		
Porting Head:	Grey Cast Iron		
Element Case:	Steel		
Weight of KF5-1K:	23.2 lbs. (10.5 kg)		
Element Change Clearance:	2.0" (51 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media° (synthetic), 3, 5 and 10 μ ASP° media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media" (synthetic), 10 μ ASP" media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), 3, 5 and 10 μ ASP $^{\circ}$ media (synthetic)	
Phosphate Esters	All Z-Media * (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP * media (synthetic)	
Skydrol [®]	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals & stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP [*] media (synthetic)	

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NF particle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_X \ge 200$	$\beta_{\rm X}({\rm c}) \ge 200$	$\beta_X(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3	N/A	N/A	N/A	4.0	4.8
KZW5	N/A	N/A	N/A	5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5
Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KZW1	61	KDZ1	89
KZ3/KAS3	115	KZW3	64	KDZ3	71
KZ5/KAS5	119	KZW5	63	KDZ5	100
KZ10/KAS10	108	KZW10	67	KDZ10	80
KZ25	93	KZW25	79	KDZ25	81

Element Collapse Rating: Flow Direction: 150 psid (10 bar) for standard elements Outside In

Element Nominal Dimensions:

3.9" (99 mm) O.D. x 9.0" (230 mm) long

$\Delta P_{\text{housing}}$

KF5 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{element}$

 $\Delta P_{filter} = \Delta P_{housing} + (\Delta P_{element} * V_{f})$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KF51KZ10S24D5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta P_{\text{filter}} = 3 \text{ psi} + (2 \text{ psi} * 1.3) = 5.6 \text{ psi}$ <u>OR</u>

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.14 \text{ bar} * 1.3) = .40 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

KF5

Note: If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_{f} . Plug this variable into the overall pressure drop equation.

siessale alop equation				
Ele.	ΔP			
K3	0.25			
K10	0.09			
K25	0.02			
KAS3	0.10			
KAS5	0.08			
KAS10	0.05			
KDZ1	0.24			
KDZ3	0.12			
KDZ5	0.10			
KDZ10	0.06			
KDZ25	0.04			
KZW1	0.43			
KZW3	0.32			
KZW5	0.28			
KZW10	0.23			
KZW25	0.14			

NOTES:

metric mounting holes.

Medium Pressure Filter SRLT

	 Features and Benefits Smaller, compact version of the RLT Quick and easy cartridge element changeouts Lightweight at 3 pounds 	25 gpm <u>100 L/min</u> 1400 psi 100 bar	GH RLT KF5
	 Offered in pipe, SAE straight thread and ISO 228 porting 		SRLT
	 Available with NPTF inlet and outlet female test ports 		K9
The second s	 Various Dirt Alarm[°] options Same day shipment model available 		2K9
			3K9
			QF5
			QF5i
Model No. of filter in photograph is SRLT6RZ10S12D5.		2QF5	/3QF5

QFD5

Flow Rating:	Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids	Filter	QF15
Max. Operating Pressure:	1400 psi (100 bar)	Housing	
Min. Yield Pressure:	4000 psi (276 bar), per NFPA T2.6.1	Specifications	OI F15
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		QLI IS
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Head:	Aluminum		
Element Case:	Aluminum		
Weight of SRLT-6R: Weight of SRLT-12R:			
Element Change Clearance:	2.75" (70 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media [°] (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	
Skydrol*	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

SRLT

Medium Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		Ratio Per ISO 4572/NFP	Filtration Ratio Using APC calibrat	•	
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_X \ge 200$	$\beta_X(c) \ge 200$	$\beta_{\chi}(c) \ge 1000$
6RZ1	<1.0	<1.0	<1.0	<4.0	4.2
6RZ3	<1.0	<1.0	<2.0	<4.0	4.8
6RZ5	2.5	3.0	4.0	4.8	6.3
6RZ10	7.4	8.2	10.0	8.0	10.0
6RZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
6RZ1	15	12RZ1	30
6RZ3	15	12RZ3	30
6RZ5	17	12RZ5	34
6RZ10	14	12RZ10	28
6RZ25	25	12RZ25	50

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions: 2.0" (50 mm) O.D. x 6.0" (150 mm) long

$\Delta P_{\text{housing}}$

SRLT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for SRLT6RZ10S12D5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the SRLT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 6RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ $\Delta P_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * .67) = 9.7 \text{ psi}$ <u>OR</u>

 $\Delta P_{filter} = .34 \text{ bar} + (.48 \text{ bar} * .67) = .66 \text{ bar}$

SR

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}. Plug$ this variable into the overall pressure drop equation. Ele. ΛP

Ele.	ΔΡ
6R3	0.45
6R10	0.38

NOTES

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 6R3V
- Box 3. E media elements are only available with Buna N seals.
- all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered
- Box 5. B porting option supplied with metric mounting holes.

Medium Pressure Filter

100 gpm <u>380 L/min</u>

900 psi

60 bar

Features and Benefits (K9)

- Extremely versatile multiple inlet and outlet ports; can be used alone or in series with another K9
- Top loading for easy access for element change-out
- Allows consolidation of inventoried replacement elements by using K-size elements
- Multiple inlet and outlet porting options reduce the need for additional adaptors on installation
- Can be fitted with test ports for oil sampling
- Small profile allows filter to be mounted in tight areas
- Various Dirt Alarm options
- Meets HF4 automotive standard
- Part of Schroeder Industries Energy Savings Initiative

Model No. of filter in photograph is K91KZ5BP20NP20ND5C.

K9

Flow Rating: Max. Operating Pressure:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids 900 psi (60 bar)	Filter Housing	QF15
Min. Yield Pressure:	3200 psi (220 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 80 psi (5.5 bar)		SSQLF15
Porting Head & Cap:	Cast Aluminum		
Element Case:	Steel		
Weight of K9-1K:	19 lbs. (8.6 kg)		
Weight of K9-2K:	30 lbs. (13.6 kg)		
Weight of K9-3K:	41 lbs. (18.6 kg)		
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		

Appropriate Schroeder Media	Fluid
All E media (cellulose), Z-Media [°] and ASP [°] media (synthetic)	Compatibility
All Z-Media* (synthetic), 3, 5 and 10 μ ASP* media (synthetic)	
10 and 25 μ Z-Media $^{\circ}$ (synthetic), 10 μ ASP $^{\circ}$ media (synthetic)	
3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), 3, 5 and 10 μ ASP $^{\circ}$ media (synthetic)	
All Z-Media [*] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP [*] media (synthetic)	
3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP [*] Media (synthetic)	
	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP [*]

K9 Medium Pressure Filter

Element Performance Information & Dirt Holding Capacity

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		io Per ISO 4572/NFI article counter (APC) calibu	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_X \ge 200$	$\beta_{X}(c) \ge 200$	$\beta_X(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KAS3/KKZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KAS5/KKZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KAS10/KKZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Dirt Holding Capacity

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: Flow Direction:

150 psid (10 bar) for standard elements

Outside In

Element Nominal Dimensions:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Medium Pressure Filter K9

$\Delta P_{\text{housing}}$

K9 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Flow (L/min)

Pressure Drop Information Based on Flow Rate and Viscosity

80 0.30 **Z**5 0.20 Z10 Z25 0.10 0.00 120 20 60 100

80

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Flow Rate [GPM]

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for K91KZ10BP16NP16ND5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{housing}$ at 50 gpm. In this case, $\Delta P_{housing}$ is 8 psi (.55 bar) on the graph for the K9 housing.

40

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] | \Delta P_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

2.00

0.00

0

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07

	BOX 7								
	Porting								
Port 1 (standard)	Port 2	Port 3	Port 4	Omit=40 PSI Bypass					
N = None P16 = 1" NPTF P20 = 1 ¹ / ₄ " NPTF P24 = 1 ¹ / ₂ " NPTF	N = None P16 = 1" NPTF P20 = 1¼" NPTF P24 = 1½" NPTF	N = None P16 = 1" NPTF P20 = 1 ¹ /4" NPTF P24 = 1 ¹ /2" NPTF	N = None P16 = 1" NPTF P20 = 1¼" NPTF P24 = 1½" NPTF	X = Blocked bypass 10 = 10 psi bypass setting 20 = 20 psi bypass					
S16 = SAE-16 S20 = SAE-20 S24 = SAE-24	F16 = 1" SAE 4-bolt flange Code 61 F20 = $1\frac{1}{2}$ " SAE 4-bolt flange Code 61 F24 = $1\frac{1}{2}$ " SAE 4-bolt flange Code 61	S16 = SAE-16 S20 = SAE-20 S24 = SAE-24	F16 = 1" SAE 4-bolt flange Code 61 F20 = 1¼" SAE 4-bolt flange Code 61 F24 = 1½" SAE 4-bolt flange Code 61	25 25 psi bypass setting 25 = 25 psi bypass setting					
B16 = ISO 228 G-1" B20 = ISO 228	S16 = SAE-16 S20 = SAE-20 S24 = SAE-24	B16 = ISO 228 G-1" B20 = ISO 228	S16 = SAE-16 S20 = SAE-20 S24 = SAE-24	30 = 30 psi bypass setting 60 = 60 psi bypass					
G-1¼" B24 = ISO 228 G-1½"	B16 = ISO 228 G-1" B20 = ISO 228 G-1 ¹ /4" B24 = ISO 228 G-1 ¹ /2"	G-1¼" B24 = ISO 228 G-1½"	B16 = ISO 228 G-1" B20 = ISO 228 G-1¼" B24 = ISO 228 G-1½"	setting					

BOX 8		BOX 9
Test Points		Dirt Alarm [®] Options
mit=None		Omit = ^{None}
U = Test point in cap (upstream)	Visual	D5 = Visual pop-up D5C = D5 in cap
UU=Test points in block (upstream and downstream)	Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap
	Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
	Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS101 = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS16LCT = Low current MS16T
	Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
	Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5.
- Box 5. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 9. If location 1 is used as inlet port, dirt alarm will occupy location 2. If location 2 is used as inlet port, dirt alarm will occupy location 1. If dual inlet ports are specified, the only dirt alarm option is pop-up indicator in cap (D5C).

On

ι

Single Pass Filter Kit2K9/3K9

	 Features and Benefits Two or three patented-pending K9 filters supplied in series as a single filter assembly providing in-line single pass particulate and water filtration Meets HF4 automotive standard 900 psi rating covers almost all transfer line pressure specs including air driven transfer systems Top loading for easy access for element change out Allows consolidation of inventoried elements by using K-size elements Can be fitted with test points for oil sampling 	100 gpm <u>380 L/min</u> 900 psi 60 bar	GH RLT KF5 SRLT K9 2K9 3K9 QF5 QF5i
Model No. of filters in photograph are 3K9127EDBBP20P20UUD5C ar	nd Custom 2K9.	2QF	5/3QF5

	-		
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	900 psi (60 bar)	Housing	QLF15
Min. Yield Pressure:	3200 psi (220 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		SSQLF15
Bypass Setting:	Cracking: 40 psi (2.8 bar) each filter housing		
Porting Base & Cap:	Cast Aluminum		
Element Case:	Steel		
Element Change Clearance:	8.50" (215 mm) for 1K; 17.5" (445 mm) for KK; 26.5" (673 mm) for 27K		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media°, 3, 5 and 10 μ ASP° media (synthetic)	
Phosphate Esters	All Z-Media * (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	
Skydrol [°]	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP [*] Media (synthetic)	

2K9/3K9 5

Single Pass Filter Kit

Metric dimensions in ().

(114) MAX

6.25 159)

1K=14.95 (380) 2K=24.36 (619) 3K=33.76 (858)

3.13

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_X \ge 200$	$\beta_{\chi}(c) \ge 200$	$\beta_X(c) \ge 1000$	
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2	
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8	
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3	
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0	
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0	
KZW1	N/A	N/A	N/A	<4.0	<4.0	
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8	
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4	
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6	
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5	

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3/	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Outside In

Flow Direction:

Element Nominal Dimensions:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

Element Performance Information & Dirt Holding Capacity

Single Pass Filter Kit 2K9/3K9

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for 2K9109DBBP16P16D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 16 psi (1.1 bar) on the graph for the 2K9 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm for the first element. In this case, $\Delta P_{element}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Use the element pressure curve to determine $\Delta P_{element^2}$ at 50 gpm for the first element. In this case, $\Delta P_{element}$ is 5 psi (.34 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{element}*V_{f}$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 16 \text{ psi} [1.1 \text{ bar}] | \Delta P_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}] | \Delta P_{\text{element}} = 5 \text{ psi} [.34 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

 $\Delta P_{\text{filter}} = 16 \text{ psi} + (2 \text{ psi} * 1.1) + (5 \text{ psi} * 1.1) = 23.7 \text{ psi}$ OR $\Delta P_{\text{filter}} = 1.1 \text{ bar} + (.14 \text{ bar} * 1.1) + (.34 * 1.1) = 1.6 \text{ bar}$

Pressure Drop Information Based on Flow Rate

and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f Plug$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07

2K9/3K9

Single Pass Filter Kit

Filter Model		How to Build a V			r for a Schroeder 2		9: DX 9 BOX 10 BOX 1	11 BO	K 12	
Number		2K9 – –	_			_				
Selection		Example: NOTE: One	option per	box						
Scicction		BOX 1 BOX 2 BOX	<u> </u>		X 6 BOX 7 BOX 8	BO	X 9 BOX 10 BOX 1	1 BOX	12	
		2K9 – 1 – 09) – D	– B – I	3 – B – P16 –	- P1	16 –	_	= 2K	(9109DBBBP16P16D5
		BOX 1 BOX 2		BOX 3	BOX 4		BOX 5			BOX 6
		Number		DOX 5	First Housing					
		Filter of	넏	ength of lements	Element Micron		Second Housir Element Micro	on l		Third Housing
		Element			Rating		Rating		A =	1 μ Z-Media®
		2K9		-Size Element	$A = 1 \mu Z$ -Media [*]		$A = 1 \mu Z$ -Media		в =	3 μ Z-Media®
		2		K Size Element	$B = 3 \mu Z$ -Media		$B = 3 \mu Z$ -Media		с =	5 μ Z-Media®
		3K9 ³	27 = 2	7K Size Element	C = 5 μ Z-Media®		C = 5 µ Z-Media [®]			10 μ Z-Media [®]
					D = 10 μ Z-Media [°]		$D = 10 \mu Z$ -Media [*]		E =	25 μ Z-Media [®]
					$E = 25 \mu Z$ -Media [°]		$E = 25 \mu Z$ -Media [°]		F =	W media (water removal)
					F = W Water Removal		F = W Water Remova	ıl		1 μ ZW-media
					G = 1 μ ZW-media		$G = 1 \ \mu ZW$ -media			3 μ ZW-media 5 μ ZW-media
					H = 3 μ ZW-media		$H = 3 \ \mu ZW$ -media			5 μ ZW-media 10 μ ZW-media
					J = 5 μ ZW-media		$J = 5 \mu ZW$ -media			25 μ ZW-media
					K = 10 μ ZW-media		$K = 10 \ \mu ZW$ -media			3 μ AS-media
					L = 25 µ ZW-media		$L = 25 \mu$ ZW-media			5 μ AS-media
					$M = 3 \mu AS$ -media		$M = 3 \ \mu \ \text{AS-media}$		0 =	10 μ AS-media
					N = 5 μ AS-media		$N = 5 \mu AS$ -media			
					O = 10 μ AS-media		$O = 10 \mu$ AS-media			
		BOX 7			BOX 8		BOX 9			BOX 10
		Seal Materia	I	"li	n" Porting		"Out" Port	ing		Bypass
		B = Buna N		P16 = 1" NPTF	PTF		P16 = 1" NPTF		Omit=40 PSI B	
		V = Viton* H = EPR		$P20 = 1^{1}A'' NPTF$			P20 = 1 ¹ / ₄ " NPTF P24 = 1 ¹ / ₂ " NPTF B16 = ISO 228 G-1" B20 = ISO 228 G-1 ¹ / ₄ "		30=30 psi bypass	
				$P24 = 1\frac{1}{2}$ " NPT	B16 = ISO 228 G-1"					50=50 psi bypass
				$B16 = ISO 228 \text{ G} - 1^{\circ}$ $B20 = ISO 228 \text{ G} - 1^{\circ}_{4}$ "						
		H.5 = Skydrol [®] Com	patible	B24 = ISO 228			B24 = ISO 228 G-1 ¹ / ₂ "			
					5AE 4-bolt flange Code 61 "SAE 4-bolt flange Code 61 F16 = 1" SAE 4-bolt flange Code 61 F20 = 1^{1}_{4} " SAE 4-bolt flange Code 61		F16 = 1" SAE 4-bolt flan			
					4-bolt flange Code 61		$F20 = 1^{1}_{4}$ SAE 4-bolt fla F24 = 1^{1}_{2} " SAE 4-bolt fla			
				S16 = SAE-16			S16 = SAE-16			
				S20 = SAE-20 S24 = SAE-24			S20 = SAE-20 S24 = SAE-24			
					/ 11		521 - 5712 21			BOX 12
		BOX 11								
				Dirt Alarm	n [®] Options			Test Points		
			Om	nit= None				Omit	= None	
king 1 be		Visual		05 = Visual pop-	up			U	= Test po	pint in cap
7K				5C = D5 in cap					(upstr	eam)
y. must		Visual with Thermal Lockout		08 = Visual w/ tł 3C = D8 in cap	iermal lockout			UU		pints in block
Kor			M	S5 = Electrical w	/ 12 in. 18 gauge 4-conducto	tor ca	ble			eam and stream)
dia not				LC = Low current	t MS5 / DIN connector (male end o	only				
h.				LC = Low current		Offiy)				
part to K9		Electrical			/ 12 ft. 4-conductor wire					
lease				LC = Low current	5 pin Brad Harrison connector t MS12	or (mai	ie end only)			
			MS	16 = Electrical w	/ weather-packed sealed cor	onnec	tor			
H.5,				LC = Low current	t MS16 / 4 pin Brad Harrison male co	conne	ector			
e					ove) w/ thermal lockout	conne				
cludes			MS5L0	CT = Low current	MS5T					
als,		Electrical		0T = MS10 (see a CT = Low current	bove) w/ thermal lockout					
esh 1t oil		with Thermal			bove) w/ thermal lockout					
terior.		Lockout		CT = Low current						
Dow				DT = MST6 (see a CT = Low current	bove) w/ thermal lockout MS16T					
a				CT = Low current						
of		Electrical			hreaded connector & light	8. liah+	t (male and)			
lo in		Visual			5 pin Brad Harrison connector & bove), direct current, w/ the					
ole in licator		Electrical Visual	MS13DCL	CT = Low current	MS13DCT					
		with Thermal Lockout		CT = MS14 (see a CT = Low current	bove), direct current, w/ the MS14DCT	erma	I lockout			
	188	SCHROEDER INDU								
	100	JCHNOEDER INDU	211/152							

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. ZW media not available in 27K length.
- Box 4 Replacement element part & 5. numbers are identical to K9 replacement parts. Please reference page 184.
- Box 6. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton is a registered trademark of DuPont Dow Elastomers.Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 12. Option UU not available in combination with indicator in block.

In-Line Filter QF5

300 gpm 1135 L/min

500 psi 35 bar

Features and Benefits

- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with standard Viton[®] seals
- Offered in pipe, SAE straight thread, and flange porting
- Optional inlet and outlet test points
- WQF5 model for water service also available
- Various Dirt Alarm[®] options

Model No. of filter in photograph is QF539QZ10P32.

QF5

()		

		_	
Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter	0545
Max. Operating Pressure:	500 psi (35 bar)	Housing	QF15
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	
Rated Fatigue Pressure:	Contact Factory		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base:	Cast Aluminum		
Element Case:	Steel		
Cap:	Ductile Iron		
Weight of QF516: Weight of QF539:			
Element Change Clearance:	16Q 12.0" (205 mm) 39Q 33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media" and 10 μ ASP" media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ Media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	
Skydrol [®]	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [*] media (synthetic)	

QF5

In-Line Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

			tio Per ISO 4572/N ated particle counter (A per ISO 4402			per ISO 16889 ted per ISO 11171
Element		ß _x ≥75	ß _X ≥100	$\beta_{\rm X} \ge 200$	$\beta_X(c) \ge 200$	$\beta_X(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0

Ele	ment	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	
	Z1	276	CLQFZ1	307	PMLZ1	307	
	Z3	283	CLQFZ3	315	PMLZ3	315	
16Q	Z5	351	CLQFZ5	364	PMLZ5	364	
	Z10	280	CLQFZ10	306	PMLZ10	330	
	Z25	254	CLQFZ25	278	PMLZ25	299	
	Z1	974	CLQFZ1	1259	PMLZ1	1485	
39Q	Z3	1001	CLQFZ3	1293	PMLZ3	1525	
	Z5	954	CLQFZ5	1302	PMLZ5	1235	
	Z10	940	CLQFZ10	1214	PMLZ10	1432	
	Z25	853	CLQFZ25	1102	PMLZ25	1299	
	Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)						
	Flow Direction Outside In						

Flow Direction: Element Nominal Dimensions:

Outside In

16QCLQF:

16QPML:

39QCLQF:

39QPML:

16Q:

6.0" (150 mm) O.D. x 16.85" (430 mm) long 6.0" (150 mm) O.D. x 18.21" (463 mm) long 6.0" (150 mm) O.D. x 16.00" (405 mm) long 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 6.0" (150 mm) O.D. x 37.80" (960 mm) long

In-Line Filter

QF5

$\Delta P_{\text{housing}}$

QF5 $\Delta P_{housing}$ for fluids with sp gr (specific gravity) = 0.86:

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\Delta P_{filter} = \Delta P_{housing} + (\Delta P_{element} * V_{f})$

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for QF539QZ3P32UDPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi [.14 bar]} | \Delta P_{\text{element}} = 1 \text{ psi [.07 bar]}$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{filter} = 2 \text{ psi} + (1 \text{ psi} * 1.1) = 3.1 \text{ psi}$ OR

 $\Delta P_{filter} = .14 \text{ bar} + (.07 \text{ bar} * 1.1) = .22 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f. Plug this variable into the overall pressure drop equation.$

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

In-Line Filter

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 39QZ10V
- Box 3. QCLQF are CoreCentric* coreless elements - housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton^{*} seals. Seal designation in Box 6 applies to housing only. Viton^{*} is a registered trademark of DuPont Dow Elastomers.
- Box 8. When X is paired with a standard filter series, a standard bushing and spring plate will be used.

Cold Start Protection Inside-Out Flow Filter QF5i

Features and Benefits (QF5i)	120 gpm	GH
 Magnetic filtration protection while filter is in cold start bypass 	454 Ľ/min	RLT
 Coreless QCL element with inside-out flow for eco-friendly easy disposal 	500 psi	KL I
 Efficient means to remove both ferromagnetic and non-ferromagnetic parts from the fluid 	35 bar	KF5
 Designed for inside-out flow 		SRLT
 Element changeout from the top minimizes oil spillage 		
 Offered in pipe, SAE straight thread, and flange porting 		K9
 Optional inlet and outlet test points 		
 Various Dirt Alarm[®] options 		2K9
		3K9
		QF5
		QF5i

Model No. of filter in photograph is QF5i16QCLIZ10F3260M.

			QFD5
Flow Rating:	Up to 120 gpm (454 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	500 psi (35 bar)	Housing	QF15
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	
Rated Fatigue Pressure:	Contact Factory		OLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		QLFIS
Bypass Setting:	Cracking: 60 psi (4.1 bar) Full Flow: 95 psi (6.6 bar)	SS	SQLF15
Porting Base:	Cast Aluminum		
Element Case:	Steel		
Cap:	Ductile Iron		
Weight of QF5i16: Weight of QF5i39:			
Element Change Clearance:	16QCLI 16.0" (407 mm)		

Type Fluid Appropriate Schroeder Media	Fluid
Petroleum Based Fluids All Z-Media [*] and ASP [*] media (synthetic)	Compatibility
High Water Content All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions $~~$ 10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols $3, 5, 10$ and 25μ Z-Media° and all ASP° Media (synthetic)	

Cold Start Protection Inside-Out Flow Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity				io Per ISO 4572/NI ated particle counter (A per ISO 4402			per ISO 16889 ted per ISO 11171	Dirt Hol	ding Capacity
	Ele	ment	ß _x ≥75	$\beta_X \ge 100$	$\beta_{\rm X} \ge 200$	β _X (c)≥200	$\beta_X(c) \ge 1000$	Element	DHC (gm)
		CLIZ1	<1.0	<1.0	<1.0	<4.0	4.2	CLIZ1	307
	16Q	CLIZ3	<1.0	<1.0	<2.0	<4.0	4.8	CLIZ3	315
		CLIZ5	2.5	3.0	4.0	4.8	6.3	CLIZ5	364
		CLIZ10	7.4	8.2	10.0	8.0	10.0	CLIZ10	306
		CLIZ25	18.0	20.0	22.5	19.0	24.0	CLIZ25	278

Flow Direction: Inside-Out Element Nominal Dimensions: 16QCLI:

6.0" (150 mm) O.D. x 17.81" (452 mm) long

Cold Start Protection Inside-Out Flow Filter

$\Delta P_{\text{housing}}$

QF5i $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

∆P_{element} 16QCLIZ

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 120 gpm (455 L/min) for QF5i16QCLIZ3P32 using 200 SUS (44 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the QF5i housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 120 gpm. In this case, $\Delta P_{element}$ is 6 psi (.415 bar) according to the graph for the 16QCLIZ3 element.

Because the viscosity in this sample is 200 SUS (44 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 6 \text{ psi } [.415 \text{ bar}]$

 $V_{f} = 200 \text{ SUS } (42.4 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.333$ $\Delta P_{filter} = 3 \text{ psi} + (6 \text{ psi} * 1.333) = 11 \text{ psi}$ <u>OR</u>

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.415 \text{ bar} * 1.333) = .76 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

QF5i Cold Start Protection Inside-Out Flow Filter

Model Number	BOX 1 BOX 2 BOX QF5i	A BOX 4 BOX	5 BOX 6 BOX 7 BO	K 8 BOX 9 BOX 10	BOX 11		
Selection	BOX 1 BOX 2 BOX QF5i - 16 - QC		5 BOX 6 BOX 7 BOX - P32 - 60		- DPG P3260MUDPG		
	BOX 1 BOX	2 BOX 3	BO	X 4	BOX 5		
	Filter Elem Series Lengtl		nt Media	Туре	Micron Rating		
	QF5i		Z = Excellemen (synthetic)	t [°] Z-Media [°]	1 = 1 μm Z-Media [*] 3 = 3 μm Z-Media [*] 5 = 5 μm Z-Media [*] 10 = 10 μm Z-Media [*] 25 = 25 μm Z-Media [*]		
	BOX 6		BOX 7	BOX 8	BOX 9		
	Housing Seal		Porting	Bypass Sett	ing Magnet		
	Material Omit = Buna N	P32 = 2"NPTF	F32 = 2" SAE 4-bolt	60 = 60 psi crao	Omit = No Magnet		
	V = Viton*	1 52 - 2 101 11	flange Code 61	00 - 00 psi cia	M = Magnetic Filter Rod		
		P40 = 2½"NPTF P48 = 3"NPTF	F40 = 2½"SAE 4-bolt flange Code 61				
		S32 = SAE-32	F48 = 3" SAE 4-bolt flange Code 61				
	BOX 10			BOX 11			
	Test Points		Dirt /	Alarm [®] Options			
	Omit = No Test point		Omit = None	1 1:66			
	U = Test point in cap (upstream)	Visual	DPG = StandardD5 = Visual po	d differential pressure op-up	gauge		
	UU = Test points in block (upstream and	Visual with Thermal Lockout	D8 = Visual w	al w/ thermal lockout			
	downstream)	Electrical	MS5LC = Low curr MS10 = Electrica MS10LC = Low curr MS11 = Electrica MS12 = Electrica MS12LC = Low curr MS16 = Electrica MS16LC = Low curr	w/ DIN connector (male end only) ent MS10 w/ 12 ft. 4-conductor wire w/ 5 pin Brad Harrison connector (male end only ent MS12 w/ weather-packed sealed connector			
lement part combination		Electrical with Thermal Lockout	MS5LCT = Low curr MS10T = MS10 (se MS10LCT = Low curr MS12T = MS12 (se MS12LCT = Low curr	ee above) w/ thermal rent MS10T ee above) w/ thermal rent MS12T ee above) w/ thermal rent MS16T	lockout lockout		
and 5 plus the		Electrical	MS13 = Supplied	l w/ threaded connec	5		
CLIZ10V or this filter		Visual			on connector & light (male end) ent, w/ thermal lockout		
ith Viton [*] seals. ion es to		Electrical Visual with Thermal Lockout	MS13DCLCT = Low curr	rent MS13DCT ee above), direct curre	nt, w/ thermal lockout		

Box 6. All elemer are suppli Seal desig in Box 6 a housing o Viton* is a trademark of DuPont Dow Elastomers.

In-Line Filter 2QF5/3QF5

300 gpm 1135 L/min

500 psi

35 bar

27	

Features and Benefits

Two or three QF5 filters supplied in series as a single filter assembly providing in-line single pass particulate and water filtration

- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-plated and QCLQF coreless elements in 16" and 39" lengths with standard Viton[®] seals
- Offered in pipe, SAE straight thread, and flange porting
- Inlet and outlet test points
- Various Dirt Alarm[®] options

Model No. of filter in photograph is 2QF539QEDBP40P40 and 3QF539QEDBP40P40

2QF5/3QF5

Flow Rating Max. Operating Pressure	: Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter Housing	QF15
1 5	: 2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	OLE15
Rated Fatigue Pressure	: Contact Factory		QLFTJ
Temp. Range	: -20°F to 225°F (-29°C to 107°C)		
Bypass Setting	: Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base	: Cast Aluminum		
Element Case	: Steel		
Сар	: Ductile Iron		
Element Change Clearance	: 33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ Media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	
Skydrol [®]	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [*] media (synthetic)	

DF5/30F5

In-Line Filter

381)

OUT

6.88 TO NLET/OUTLET

Metric dimensions in ().

21.00

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Filtration Ratio per ISO 16889 Using automated particle counter (APC) calibrated Using APC calibrated per ISO 11171 per ISO 4402 Element $\beta_{\rm X} \ge 75$ $\beta_{\rm X} \ge 100$ $\beta_{\rm X} \ge 200$ $\beta_{\rm X}(c) \ge 200$ $\beta_{\rm X}(c) \ge 1000$ Z1/CLOFZ1/PMLZ1 <1.0 <1.0 <1.0 <4.0 4.2 Z3/CLQFZ3/PMLZ3 <1.0 <1.0 <2.0 <4.0 4.8 39Q Z5/CLQFZ5/PMLZ5 2.5 4.0 4.8 6.3 3.0 Z10/CLQFZ10/PMLZ10 7.4 8.2 10.0 8.0 10.0 Z25/CLQFZ25/PMLZ25 20.0 22.5 19.0 24.0 18.0 DHC (gm) Element DHC (gm) Element Element DHC (gm) Z1 CLQFZ1 1259 PMLZ1 1485 974 Z3 1001 CLQFZ3 PMLZ3 1525 1293 Z5 CLQFZ5 PMLZ5 39Q 954 1302 1235 Z10 940 CLQFZ10 1214 PMLZ10 1432 Z25 CLQFZ25 853 1102 PMLZ25 1299 Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar) **Element Collapse Rating:** Flow Direction: Outside In 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long **Element Nominal Dimensions:** 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QCLQF: 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Element Performance Information & Dirt Holding Capacity

In-Line Filter 2QF5

2QF5/3QF5

Pressure

Information

Drop

Based on

Flow Rate

and Viscosity

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for 3QF539QEDBVP32P3250DPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 5.5 psi (.39 bar) on the graph for the 3QF5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm for the first element. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ25 element.

Use the element pressure curve to determine $\Delta P_{element^2}$ at 100 gpm for the first element. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ10 element.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm for the first element. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5.5 \text{ psi } [.39 \text{ bar}] | \Delta P_{\text{element}} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^2} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}] | \Delta P_{\text{element}^3} = 1 \text{ psi$

 $V_f = 160 \text{ SUS} (34 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 5.5 \text{ psi} + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) = 8.8 \text{ psi}$ OR

 $\Delta P_{filter} = .39 \text{ bar} + (.07 \text{ bar} * 1.1) + (.07 * 1.1) + (.07 * 1.1) = .62 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}. Plug this variable into the overall pressure drop equation.$

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS-	0.01		

	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11 BOX 12 2QF5						
			·				
		OTE: One option p		OX 6 BOX 7 BOX 8 E	3OX 9 BOX 10 BOX 11	BOX 12	
	2QF5 -		DD_		P32 – X – U -	- DPG = 2QF539QDDVP32P32	(UDPG
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
	Filter Series	Element Length (in)	Element Style	1st Housing Element Media	2nd Housing Element Media (2QF5 & 3QF5)	3rd Housing Element Media (3QF5 only)	
	2QF5	16	Q	A = Z1	A = Z1	A = Z1	
	3QF5	39	QCLQF	B = Z3 C = Z5	B = Z3 C = Z5	B = Z3 C = Z5	
	BOX	7	QPML	D = Z10	D = Z10	D = Z10	
	Housing			E = Z25 F = W	E = Z25 F = W	E = Z25 F = W	
	Mater			G = AS3 H = AS5	G = AS3 H = AS5	G = AS3 H = AS5	
0	mit = Bui			J = ASS J = AS10	J = ASS J = AS10	J = ASS J = AS10	
	H = EPF	3		·			
	V = Vite	on [°] BOX 8			BOX 9	BOX 10	
		"IN" Portir	ng	"OU"	T" Porting	Bypass Setting	
	P32 = 2	2"NPTF		P32 = 2"NPTF		Omit = 30 psi cracking	
	P40 = 2½"NPTF		P40 = 2½"NPTF		50 = 50 psi cracking		
	P48 = 3"NPTF		P48 = 3"NPTF		X = Blocked bypass		
	S32 = SAE-32		S32 = SAE-32		BOX 11		
	F32 = 2"SAE 4-bolt flange Code 61		F32 = 2"SAE 4-b	olt flange Code 61	Test Points		
	$F40 = 2\frac{1}{2}$ "SAE 4-bolt flange Code 61			F40 = 2½"SAE 4-	bolt flange Code 61	Omit = None	
	F48 = 3"SAE 4-bolt flange Code 61			F48 = 3"SAE 4-b	olt flange Code 61	U = Test point in cap (upstream)	
				BOX 12		o – rest point in cap (upstrea)
	Dirt Alarm [®] Ontions						

How to Build a Valid Model Number for a Schroeder 2QF5:

Filter Model Number Selection

Dirt Alarm [®] Options					
None	Omit =	None			
Visual	D5 = D5C =	Standard differential pressure gauge Visual pop-up D5 in cap D5 mounted opposite standard location			
Visual with Thermal Lockout	D8C =	Visual w/ thermal lockout D8 in cap D8 mounted opposite standard location			
Electrical	MS5LC = MS10 = MS10LC = MS12 = MS12LC = MS16LC =	Electrical w/ 12 in. 18 gauge 4-conductor cable Low current MS5 Electrical w/ DIN connector (male end only) Low current MS10 Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end only) Low current MS12 Electrical w/ weather-packed sealed connector Low current MS16 Electrical w/ 4 pin Brad Harrison male connector			
Electrical with Thermal Lockout	MS5LCT = MS10T = MS10LCT = MS12LCT = MS12LCT = MS16T = MS16LCT =	MS5 (see above) w/ thermal lockout Low current MS5T MS10 (see above) w/ thermal lockout Low current MS10T MS12 (see above) w/ thermal lockout Low current MS12T MS16 (see above) w/ thermal lockout Low current MS16T Low current MS17T			
Electrical Visual		Supplied w/ threaded connector & light Supplied w/ 5 pin Brad Harrison connector & light (male end)			
Electrical Visual with Thermal Lockout	MS13DCLCT = MS14DCT =	MS13 (see above), direct current, w/ thermal lockout Low current MS13DCT MS14 (see above), direct current, w/ thermal lockout Low current MS14DCT			

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4, plus the letter V. Example: 39QZ10V
- Box 3. QCLQF are CoreCentric* coreless elements - housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option F, Box 3 must equal Q.
- Box 7. All elements for this filter are supplied with Viton[®] seals. Seal designation in Box 5 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Boc 10. When X is paired with a standard filter series, a standard bushing and spring plate will be used.

200 SCHROEDER INDUSTRIES

In-Line Filter QFD5

350 gpm

500 psi 35 bar

1325 L/min

Model No	of filter in	nhotograph	is OFD516	QZ10F48DPG.
mouer no.	or mer m	photograph		QZ10140DFG.

QF	D!

Ма	Flow Rating: x. Operating Pressure:	Up to 175 gpm (675 L/min) for 2"; 350 gpm (1325 L/min) for 3" for 150 SUS (32 cSt) fluids 500 psi (35 bar)	Filter Housing Specifications	QF15
	Min. Yield Pressure:	Contact Factory	opeenteutions	OLF15
Ra	ated Fatigue Pressure:	Contact Factory		QLITJ
	Temp. Range:	-15°F to 200°F (-26°C to 93°C)		
	Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 33 psi (2.3 bar) for 2"; 38 psi (2.6 bar) for 3"		SSQLF15
	Porting Base & Cap:	Ductile Iron		
Eleme	nt Case & Transfer Valve:	Steel		
	Weight of QFD5-16Q:	410.0 lbs. (186.0 kg) for 2"; 455.0 (206.0 kg) for 3"		
	Weight of QFD5-39Q:	562.0 lbs. (255.0 kg) for 2"; 607.0 (275.0 kg) for 3"		
Eleme	nt Change Clearance:	16Q 12.00" (305 mm) 39Q 33.80" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [*] and ASP [*] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)	
Phosphate Esters	All Z-Media [*] (synthetic) with H (EPR) seal designation and all ASP [*] media (synthetic)	

In-Line Filter

DIM E

39Q

58.31

(1481)

61.19

(1559)

Metric dimensions in ().

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element		ß _X ≥75	$\beta_X \ge 100$	$\beta_X \ge 200$	$\beta_X(c) \ge 200$	$\beta_X(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Ele	ment	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10	306	PMLZ10	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299
Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)						

Element Collapse Rating:

Flow Direction: Outside In

39QPML:

Element Nominal Dimensions:	
Liement normal Dimensions.	

39Q: 39QCLQF:

6.0" (150 mm) O.D. x 38.70" (985 mm) long 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Element Performance Information & Dirt Holding Capacity

FD5

202 SCHROEDER INDUSTRIES

In-Line Filter QFD5

 $\Delta P_{\text{housing}}$ QFD5 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QFD516QZ3F48D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the QFD5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QCZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (Vf) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 $\Delta P_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * .67) = 9.7 \text{ psi}$ OR

 $\Delta P_{filter} = .34 \text{ bar} + (.48 \text{ bar} * .67) = .66 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS-	0.01		

In-Line Filter

How to Build a Valid Model Number for a Schroeder QF5:

Model Number Selection

Filter

FD5

BOX 9

	Dirt Alarm [®] Options
Omit = None	
DPG = Standard differential pressure gauge Visual D5 = Visual pop-up D5C = D5 in cap	
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS16T
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 39QZ10V
- Box 3. QCLQF are CoreCentric' coreless elements – housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton^{*} seals. Seal designation in Box 6 applies to housing only. Viton^{*} is a registered trademark of DuPont Dow Elastomers.
- Box 8. When X is paired with a standard filter series, a standard bushing and spring plate will be used.

In-Line Filter QF15

 Features and Benefits Also available in L-ported version Element changeout from the top minimizes 	450 gpm <u>1700 L/min</u>	GH
oil spillage Available with optional core assembly	1500 psi	
to accommodate coreless elements • Offered with standard Q, QPML deep-pleated	100 bar	KF5
and QCLQF coreless elements in 16" and 39" lengths with Viton [*] seals as the standard		SRLT
 Offered in pipe, SAE straight thread, and flange porting 		
 Integral inlet and outlet test points are standard on all models 		K9
 Various Dirt Alarm[®] options 		2K9
		3K9
		QF5
		QF5i
0AC.	2QF	5/3QF5

Model No. of filter in photograph is QF1516QZ10P24MS10A0

Flow Rating:	Up to 450 gpm (1700 L/min) for 150 SUS (32 cSt) fluids	Filter	QF15
Max. Operating Pressure:	1500 psi (100 bar)	Housing	Q. 13
Min. Yield Pressure:	4900 psi (340 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	800 psi (55 bar), per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base & Cap:	Ductile Iron		
Element Case:	Steel		
Weight of QF15-16Q:	139.0 lbs. (63.0 kg)		
Weight of QF15-39Q:	198.0 lbs. (90.0 kg)		
Element Change Clearance:	16Q 12.0" (305 mm) 39Q 33.8" (859 mm)		

Type Fluid Appropriate Schroeder Media	Fluid
Petroleum Based Fluids All E media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility
High Water Content All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions $$ 10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols $$ 3, 5, 10 and 25 μ Z-Media" and all ASP" media (synthetic)	
Phosphate Esters All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	tic)

QF15 In-Line Filter

6.0" (150 mm) O.D. x 16.00" (405 mm) long

6.0" (150 mm) O.D. x 38.70" (985 mm) long 6.0" (150 mm) O.D. x 40.01" (1016 mm) long

6.0" (150 mm) O.D. x 37.80" (960 mm) long

16QPML: 39Q:

39QCLQF: 39QPML:

Element Performance Information & Dirt Holding Capacity

In-Line Filter QF15

$\Delta P_{\text{housing}}$

QF15 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF15 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (Vf) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi} [.14 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 $\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS-	0.01		

F15 In-Line Filter

Filter Model Number Selection	How to Build a Vali BOX 1 BOX 2 QF15 Example: NOTE: One opt BOX 1 BOX 2 QF15 - 16 -	BOX 3 BOX 4	for a Schroeder QF15: BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 3 D5C	
	BOX 1	BOX 2 BOX 3	BOX 4	BOX 5
		ement Element Igth (in) Style	Media Type	Micron Rating
	QF15	16 Q 39 QCLQF QPML	Z = Excellement [•] Z-Media [•] (synthetic) AS = Anti-Stat Pleat media (synthetic) W = W media (water removal)	1 = 1 μ Z-Media 3 = 3 μ AS and Z-Media 5 = 5 μ AS and Z-Media 10 = 10 μ AS and Z-Media 25 = 25 μ Z-Media
	BOX 6		BOX 7	BOX 8
	Housing Seal Material		Porting	Bypass Setting
	Omit = Buna N V = Viton*	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G-1½ B32 = ISO 228 G-2½ B40 = ISO 228 G-2½ B48 = ISO 228 G-3"	$E_24M = 11/2$ SAE 4 holt flange	Omit = 30 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass

BOX	9	

Code 61 F48M = 3" SAE 4-bolt flange Code 61

BOX 9				
Dirt Alarm [®] Options				
	Omit = None			
Visual	DPG = Standard differential pressure gauge D5 = Visual pop-up D5C = D5 in cap D5R = D5 mounted opposite standard location			
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap D8R = D8 mounted opposite standard location			
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector			
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T			
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)			
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT			

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V. Example: 16QZ1V
- Box 3. QCLQF are CoreCentric[®] coreless elements housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton^{*} seals. Seal designation in Box 6 applies to housing only. Viton^{*} is a registered trademark of DuPont Dow Elastomers.
- Box 7. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.
- Box 8. When X is paired with a standard filter series, a standard bushing and spring plate will be used.

Integral inlet and outlet test points are standard on all models.

Base-Ported Filter QLF15

Features and Benefits In-line version also available	SUU gpm	GΗ
 Element changeout from the top minimizes oil spillage 	1900 L/min 1500 psi	LT
 Available with optional core assembly to accommodate coreless elements 	1001	F5
 Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton[*] seals as the standard 	SRI	LT
 Offered in pipe, SAE straight thread, and flange porting 		K9
Integral inlet and outlet test points are standard on all models		
 Various Dirt Alarm[®] options 	21	K9
	31	K9
	QI	F5
	QF	
5.	2QF5/3QI	F5

Model No. of filter in photograph is QLF1539QZ5F4850D

Flow Rating:	Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids	Filter	OF15
Max. Operating Pressure:	1500 psi (100 bar)	Housing	QTTS
Min. Yield Pressure:	4900 psi (340 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	800 psi (55 bar), per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 55 psi (4 bar)		SSQLF15
Porting Base & Cap:	Ductile Iron		
Element Case:	Steel		
Weight of QLF15-16Q:	121.0 lbs. (55.0 kg)		
Weight of QLF15-39Q:	180.0 lbs. (82.0 kg)		
Element Change Clearance:	16Q 12.00" (305 mm) 39Q 33.80" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [*] and ASP [*] media (synthetic)	
Invert Emulsions	10 μ and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols	3, 5, 10, and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)	
Phosphate Esters	All Z-Media [®] with H (EPR) seal designation and all ASP [®] media (synthetic)	

Base-Ported Filter

DIMENSIONAL DATA					
PORT SIZE	PORT SIZE DIM G				
1½" (38)	2.00 (51)	4.00 (102)			
2" (51)	2.00 (51)	4.00 (102)			
2½ (64)	2.00 (51)	4.00 (102)			
3" (76)	2.50 (63.5)	4.00 (102)			

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

QLF15

	.,							
			Filtration Ratio Per ISO 4572/NFPA T3.10.8.8					per ISO 16889
				Using autom	ated particle counter (APC) cali		-	ted per ISO 11171
Elem				ß _X ≥ 75	ß _X ≥ 100	ß _X ≥200	$\beta_{\chi}(c) \ge 200$	ß _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1			<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	:		<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	i		2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ1	10		7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ	225		18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1			<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	;		<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	i		2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ1	10		7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ	225		18.0	20.0	22.5	19.0	24.0
Elen	nent	DHC (gm)		Element	DHC (gm)	Element		DHC (gm)
	Z1	276		CLQFZ1	307	PMLZ1		307
	Z3	283		CLQFZ3	315	PMLZ3		315
16Q	Z5	351		CLQFZ5	364	PMLZ5		364
	Z10	280		CLQFZ10	306	PMLZ10		330
	Z25	254		CLQFZ25	278	PMLZ25		299
	Z1	974		CLQFZ1	1259	PMLZ1		1485
	Z3	1001		CLQFZ3	1293	PMLZ3		1525
39Q	Z5	954		CLQFZ5	1302	PMLZ5		1235
	Z10	940		CLQFZ10	1214	PMLZ10		1432
	Z25	853		CLQFZ25	1102	PMLZ25		1299
		Collapse Rating: Flow Direction:		nd QPML: 150 tside In	psid (10 bar), QCLQ	F: 100 psid (7 bar)	
Element Nominal Dimensions: 16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long 16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long								

39QPML:

6.0" (150 mm) O.D. x 37.80" (960 mm) long

Base-Ported Filter QLF1

$\Delta P_{\text{housing}}$

QLF15 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QLF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QLF15 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (Vf) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 $\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = 14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

F15 Base-Ported Filter

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder QF15: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 QF15						
	BOX 1 BOX 2			BOX 4		BOX 5	
	Filter Eleme Series Length	nt Element		Media Type	Mic	ron Rating	
	16	Q	Z =	Excellement [®] Z-Media [®] (synthetic)	1 = 1 µ Z-	Media	
	QLF15 39	QCLQF	AS =	Anti-Stat Pleat media (synthetic)	$3 = 3 \mu AS$	6 and Z-Medi	
	WQLF5 (Water)	QPML	W =	W media (water removal)	5 = 5 μ AS	S and Z-Medi	
				Water System Element Options	10 = 10 μ A	AS and Z-Med	
				= Q size 60 μ M media (reusable metal	<u>·</u>	Z-Media°	
	BOX 6		QM150	= Q size 150 μ M media (reusable meta BOX 7	al) BOX	/ 0	
	Housing Seal						
	Material	D24 11/#NDTE		Porting	Bypass :		
	Omit = Buna N V = Viton [°]	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF		F24 = 1½" SAE 4-bolt flange Code 61 F32 = 2" SAE 4-bolt flange	Omit = 30 psi 40 = 40 psi	-	
		P40 = 272 NPTF P48 = 3" NPTF		$F32 = 2^{-}$ SAE 4-bolt hange Code 61 F40 = 2½" SAE 4-bolt flange	50 = 50 psi (5	
		S32 = SAE-32		F40 = 272 SAE 4-bolt hange Code 61 F48 = 3" SAE 4-bolt flange	X = Blocked	bypass	
		B24 = ISO 228 G- B32 = ISO 228 G-		Code 61			
		B40 = ISO 228 G B40 = ISO 228 G B48 = ISO 228 G	·2½"	F24M = 1½" SAE 4-bolt flange Code 61			
		D+0 = 150 220 G	5	F32M = 2" SAE 4-bolt flange Code 61			
				F40M = 2½" SAE 4-bolt flange Code 61			
				F48M = 3" SAE 4-bolt flange Code 61			
part				BOX 9			
lation lus				rm [®] Options			
		Omit = Nor DPG = Star	-	ferential pressure gauge			
c° busing	Visual	D5 = Visu D5C = D5 i	ial pop-uj				
ore. ed	Visual with	D8 = Visu	ual w/ the	rmal lockout			
nedia	Thermal Lockout	D8C = D8 i MS5 = Elec		12 in. 18 gauge 4-conductor cable		-	
.9		MS5LC = Low	v current l				
ust	Electrical	MS10LC = Low MS11 = Elec		MS10 12 ft. 4-conductor wire			
ter	Liectrical	MS12LC = Low	v current l		nd only)		
n" seals.		MS16LC = Low	v current l				
				4 pin Brad Harrison male connector ove) w/ thermal lockout		-	
Dow	et a contra	MS5LCT = Low	v current l	-,			
upplied	Electrical with	MS10LCT = Low	v current l				
holes. F48M	Thermal Lockout	MS12LCT = Low	v current l				
ric		MS16LCT = Low MS17LCT = Low	v current l	MS16T			
a	Electrical Visual	MS13 = Sup	plied w/	threaded connector & light	male end)		
a d spring	Electrical Visual	MS13DCT = MS1	13 (see ab	oove), direct current, w/ thermal lockou		-	
oints	with Thermal	MS14DCT = MS1	14 (see ab	oove), direct current, w/ thermal lockou	ıt		
tric es. a a spring	Electrical Visual Electrical Visual with Thermal	MS16LCT = Low MS17LCT = Low MS13 = Sup MS14 = Sup MS13DCT = MS1 MS13DCLCT = Low	v current l v current l oplied w/ oplied w/ 13 (see ab v current l 14 (see ab	MS16T MS17T threaded connector & light 5 pin Brad Harrison connector & light (pove), direct current, w/ thermal lockou MS13DCT pove), direct current, w/ thermal lockou	ıt		

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4, and 5 plus the letter V. Example: 16QZ1V
- Box 3. QCLQF are CoreCentric' coreless elements – housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton' seals. Seal designation in Box 6 applies to housing only. Viton' is a registered trademark of DuPont Dow Elastomers.
- Box 7. B24, B32 and B40 are supplied with metric mounting holes. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.
- Box 8: When X is paired with a standard filter series, a standard bushing and spring plate will be used.

Integral inlet and outlet test points are standard on all models.

Stainless Steel Base-Ported Filter SSQLF15

In-li Eler Offe eler	res and Benefits ne version also available nent changeout from the top minimizes oil spillage ered with standard Q and QPML deep-pleated coreless nents in 16" and 39" lengths with Viton" seals	500 gpm <u>1900 L/min</u> 1500 psi 100 bar	GH RLT KF5
	he standard ered in pipe, SAE straight thread, and flange porting		SRLT
■ Inte	and and a starting and a starting and a starting a point of a starting and a starting a starting and a starting a starting and a starting a start		K9
Vari	ous Dirt Alarm [®] options		
	stainless steel provides compatibility with er-based fluids		2K9
			3K9
			QF5
int:			QF5i
Model No. of filter in photograph is SSQLF1539QZ5F	4850D5.	2QF5	/3QF5

QFD:

OF15	Filter	: Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids	Flow Rating:
Qiiio	Housing	: 1500 psi (100 bar)	Max. Operating Pressure:
	Specifications	: 4500 psi (310 bar), per NFPA T2.6.1	Min. Yield Pressure:
QLF15		Contact Factory	Rated Fatigue Pressure:
		: -20°F to 225°F (-29°C to 107°C)	Temp. Range:
SSQLF15		: Cracking: 30 psi (2 bar) Full Flow: 55 psi (4 bar)	Bypass Setting:
		: Stainless Steel	Porting Base & Cap:
		: Stainless Steel	Element Case:
		: 163.0 lbs. (74.0 kg)	Weight of SSQLF15-16Q:
		: 240.0 lbs. (109.0 kg)	Weight of SSQLF15-39Q:
		: 16Q 12.00" (305 mm) 39Q 33.80" (859 mm)	Element Change Clearance:

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [°] and ASP [°] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	

_F15 **Stainless Steel Base-Ported Filter**

Element Performance Information & Dirt Holding Capacity

SS

Elem	ent		ß _X ≥75	ß _X ≥ 100	ß _X ≥ 200	$\beta_X(c) \ge 200$	$\beta_X(c) \ge 1000$
	Z1/CL0	QFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CL0	QFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CL0	QFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CL	QFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CL	QFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CL0	QFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CL0	QFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CL0	QFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CL	QFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CL	QFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
			1				
Elen	nent	DHC (gm)	Element		DHC (gm)		
	Z1	276	PMLZ1		307		
	Z3	283	PMLZ3		315		
16Q	Z5	351	PMLZ5		364		
	Z10	280	PMLZ10		330		
	Z25	254	PMLZ25		299		
	Z1	974	PMLZ1		1485		
	Z3	1001	PMLZ3		1525		
39Q	Z5	954	PMLZ5		1235		
	Z10	940	PMLZ10		1432		
	Z25	853	PMLZ25		1299		
		1 5	and QPML: 150 ps Outside In	sid (10 bar)			

Element Nominal Dimensions:

16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long

39Q:

16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Stainless Steel Base-Ported Filter SSQLF1

$\Delta P_{\text{housing}}$

SSQLF15 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for SSQLF1516QZ3P48D9C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the SSQLF housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_{f} = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ $\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$ \underline{OR}

 $\Delta P_{\text{filter}} = .14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f. Plug$ this variable into the overallpressure drop equation.

Ele.	ΔP	Ele.	ΔP
16QAS3V	0.04	16QPMLZ1	0.08
16QAS5V	0.04	16QPMLZ3	0.05
16QAS10V	0.03	16QPMLZ5	0.05
16QPMLAS3V	0.05	16QPMLZ10	0.04
16QPMLAS5V	0.05	16QPMLZ25	0.02
16QPMLAS10V	0.04	39QAS3V	0.01
16QZ1	0.09	39QAS5V	0.01
16QZ3	0.04	39QAS10V	0.01
16QZ5	0.04	39QPMLAS3V	0.02
16QZ10	0.03	39QPMLAS5V	0.02
16QZ25	0.01	39QPMLAS10V	0.01

SSQLF15 Stainless Steel Base-Ported Filter

BOX 8	BOX 9	
Bypass Setting	Dirt Alarm [®] Options	
Omit = 30 psi cracking		Omit = None
50 = 50 psi cracking X = Blocked bypass	Visual	DPG = Standard differential pressure gauge D9 = Visual pop-up in base (stainless steel) D9C = D9 in cap (stainless steel)

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 16QZ1V
- Box 4. For options W, 150PSV, M25, M60, and M150, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton^{*} seals. Seal designation in Box 6 applies to housing only. Viton^{*} is a registered trademark of DuPont Dow Elastomers.
- Box 7. B24, B32 and B40 are supplied with metric mounting holes. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.
- Box 8: When X is paired with a standard filter series, a standard bushing and spring plate will be used.

Integral inlet and outlet test points are standard on all models.

Section 5 Low Pressure Filters Selection Guide

			Pressure psi (bar)	Flow gpm (L/ min)	Element Length/Size	Page
	Тор-Ро	rted Low Pressure	Filters			
		IRF	100 (7)	100 (380)	K, KK, KD, KKD	219
		<u>TF1</u>	300 (20)	30 (120)	A	223
			300 (20)	100 (380)	K, KK, 27K	227
		KL3 QUALITY	300 (20)	120 (455)	K, KK, 27K, 18LC	231
		<u>LF1–2"</u>	300 (20)	120 (455)	18LC	235
		MLF1 QUALITY	300 (20)	200 (760)	К	239
		<u>RLD</u>	350 (24)	100 (380)	25DN, 40D	243
	Tank-M	ounted (In-Tank/Ta			Filters	
		GRTB QUALITY	100 (7)	100 (380)	KBG	247
		<u>MTA</u>	100 (7)	15 (55)	3TA	251
		MTB	100 (7)	35 (135)	3ТВ, 5ТВ	255
psi			100 (7)	40 (150)	8Z	259
(up to 500 psi)			100 (7)	40 (151)	4LK, 8LK, 12LK, 16LK	263
5		AFTE	100 (7)	40 (151)	4LK, 8LK, 12LK, 16LK	267
dn)		<u>GPT</u>	150 (10.3)	175 (662)	15TLK	271
S		KFT QUALITY	100 (7)	100 (380)	K, KK, KD, KKD, 27K	273
Filters			100 (7)	100 (380)	K, KK, KD, KKD, 27K	277
Б Б		<u>RTI</u>	100 (7)	120 (455)	KI, KKI, 27KI	281
Low Pressure			100 (7)	150 (570)	18L, 18LD	285
Jre		ART	145 (10)	225 (850)	85Z1, 85Z3, 85Z5, 85Z10, 85Z25 2RBZ10/25, 3RBZ10/25, 4RBZ10/25,	289
Ň		BRT QUALITY	145 (10)	160 (600)	6RBZ10/25	293
Ľ			145 (10)	634 (2400)	2RTZ10/25, 3RTZ10/25, 4RTZ10/25, 6RTZ10/25	299
		<u>BFT</u>	100 (7)	300 (1135)	BB	305
		QT	100 (7)	450 (1700)	16Q, 16QPML, 39Q, 39QPML	309
	Special	Feature Tank-Mou	inted Low Pr	essure Filte	ers	
	Internal	KTK QUALITY	100 (7)	100 (380)	К, КК, 27К	313
	Internal	<u>LTK</u>	100 (7)	150 (570)	18L	317
	Severe	Duty Tank-Mounte	d			
		<u>MRT</u>	900 (62)	150 (570)	18L	321
	Spin-Or	n Low Pressure Fil				
		PAF1	100 (7)	20 (75)	6P	327
		MAF1	100 (7)	50 (190)	M, 10M	331
		<u>MF2</u>	150 (10)	60 (230)	M, 10M	335

	Inline Return Filter	IRF	IRF TF1
	 Features and Benefits Low pressure top servicing in-line filter Meets HF4 automotive standard Unique side mounting flange provides reliable seal arrangement between head and bowl The use of K-size elements allows consolidation of inventoried replacement elements Single and double length options provide optimal size for specific applications Also available with new DirtCatcher' elements (KDZ and KKDZ) Various Dirt Alarm' options 	100 gpm <u>380 L/min</u> 100 psi 7 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT
Model No. of filter in photograph is IRF2KZ10S20Y2.			KI D T I

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	100 psi (7 bar)	Housing	ANI
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	BRT
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005		DITI
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)		BFT
Porting Head: Element Case:	Sand Cast Aluminum Steel		
Weight of IRF-1K: Weight of IRF-2K:	13.5 lbs. (6.12 kg) 17.0 lbs. (7.71 kg)		QT
Element Change Clearance:	8.0" (205 mm) for 1K; 17.50" (445 mm) for KK		KTK

	Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petro	leum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility	For Tank-
Н	igh Water Content	All Z-Media [®] and ASP [®] media (synthetic)		Mounted
	Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ (synthetic), 10 μ ASP $^{\circ}$ media (synthetic)		
	Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), 3, 5, and 10 μ ASP $^{\circ}$ media (synthetic)		Filters
	Phosphate Esters	All Z-Media [*] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP [*] Media (synthetic)		PAF1
	Skydrol®	3, 5, 10 and 25 μ Z-Media" (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP* media (synthetic)		MAF1
				MF2

Inline Return Filter

SECTION A-A Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402						Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171						
Element				$\beta_x \ge 75$	ß _x ≥	100	ſ	3 _x ≥ 200		$\beta_x(c) \ge 20$	0	$\beta_x(c) \ge 1$	000
KZ1/KKZ1	I/27KZ1			<1.0	<	1.0		<1.0		<4.0		4.2	
KZ3/KKZ3	3			<1.0	<	1.0		<2.0		<4.0		4.8	
KZ5/KKZ5	5			2.5	3	.0		4.0		4.8		6.3	
KZ10/KKZ	210			7.4	8	.2		10.0		8.0		10.0	
KZ25/KKZ	Z25/27K	Z25		18.0	20).0		22.5		19.0		24.0	
KZW1				N/A	N	/A		N/A		<4.0		<4.0	
KZW3/KK	ZW3			N/A	N	/A		N/A		4.0		4.8	
KZW5/KK	ZW5			N/A	N	/A		N/A		5.1		6.4	
KZW10/K	KZW10			N/A	N	/A		N/A		6.9		8.6	
KZW25/K	KZW2	5		N/A	N	/A		N/A		15.4		18.5	
	DHC		DHC		DHC		DHC		DHC		DHC		DHC
Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Flow Direction: Outside In Element Nominal Dimensions: K:

Element Collapse Rating: 150 psid (10 bar) for standard elements

3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

220 SCHROEDER INDUSTRIES

IRF

Inline Return Filter

IRF

 $\Delta P_{housing}$ IRF ΔP_{house} for fluids with sp gr (specific gravity) = 0.86:

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for IRF2KZ10S20Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the IRF housing.

Use the element pressure curve to determine $\Delta P_{\text{stement}}$ at 70 gpm. In this case, $\Delta P_{\text{stement}}$ is 2 psi (.14 bar) according to the graph for the 2KZ10 element.

Because the viscosity in this sample is 160 SUS (24 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] \mid \Delta P_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{resur}} = 3.5 \text{ psi} + (2 \text{ psi} * 1.1) = 5.7 \text{ psi}$ $\frac{OR}{\Delta P_{\text{resur}}} = .24 \text{ bar} + (.14 \text{ bar} * 1.1) = .39 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = Flow Rate x \Delta P_{f}.Plug$ this variable into the overall pressure drop equation.

drop equation.							
Ele.	ΔP	Ele.	ΔP				
K3	0.25	2K3	0.12				
K10	0.09	2K10	0.05				
K25	0.02	2K25	0.01				
KAS3	0.10	2KAS3	0.05				
KAS5	0.08	2KAS5	0.04				
KAS10	0.05	2KAS10	0.03				
KDZ1	0.24	2KDZ1	0.12				
KDZ3	0.12	2KDZ3	.0.6				
KDZ5	0.10	2KDZ5	0.05				
KDZ10	0.06	2KDZ10	0.03				
KDZ25	0.04	2KDZ25	0.02				
KZW1	0.43	2KZW1	-				
KZW3	0.32	2KZW3	0.16				
KZW5	0.28	2KZW5	0.14				
KZW10	0.23	2KZW10	0.12				
KZW25	0.14	2KZW25	0.07				

Inline Return Filter

IRF

Filter Model Number	How to Build a Valid Mode BOX 1 BOX 2 BO IRF	X 3 BOX 4	Dr a Schroeder IRF: BOX 5 BOX 6	BOX 7 BOX 8	
Selection	BOX 1 BOX 2 BO		BOX 5 BOX 6	$\frac{BOX 7}{-Y2} = IRF2K$	Z10S20Y2
	BOX 1 BOX 2		BOX 3		
	Filter Number and Series of Elemer		Element ⁻	Гуре	
	IRF 1 = K, KK		Omit = E media (cellulos	e)	
	2 = K		AS = Anti-Static Pleat	Media	
			Z = Excellement [®] Z-M	ledia [®] (synthetic)	
			ZW = Aqua-Excelleme	nt [°] ZW media	
			W = Water Removal media M = M media (reusable metal)		
			DZ = DirtCatcher [®] Exce	ellement [®] Z-Media [®]	
	BOX 4		BOX 5	BOX 6	
	Micron Rating		Seal Material	Inlet Port	ing
	$1 = 1 \mu$ (Z, ZW and DZ	(media)	Omit = Buna N	P16 = 1" NPTF	
	$3 = 3 \mu$ (E, AS, Z, ZW a		H = EPR	P20 = 1 ¹ / ₄ " NPTF	
	$5 = 5 \mu$ (AS, Z, ZW and		V = Viton [®]	S16 = SAE-16	
	$10 = 10 \mu$ (E, AS, Z, ZW a			S20 = SAE-20	
	$25 = 25 \mu$ (E, AS, Z, ZW a $60 = 60 \mu$ (M media)	nd DZ media)		$F20 = 1\frac{4}{3}$ SAE 4-bolt	-
	$00 = 00 \mu$ (in media)			F24 = 1½" SAE 4-bolt B24 = ISO 228 G-1½"	liange code of
	BOX 7			BOX 8]
	Bypass Setting		Dirt A	Dirt Alarm [®] Options	
	Omit = 25 PSI Bypass		Omit = N		
	40 = 40 PSI Bypass			ack-mounted tri-color gauge	e
		Located @		ectrical switch	-
		Port D (Standard)		eavy-duty electrical switch v onnector	vith conduit
			ES2= Electrical Switch with Deut		Connector
				Visual Y2R = Back-mounted gauge mounted on opp side of standard location	
		Located @ Port C	of	ectrical switch mounted on standard location	opposite side
		(Optional)		eavy-duty electrical switch v	with conduit
		L]
	Р	ort Configura	tion		
Number of elements nust equal 1 when Jsing KK elements.		D (Sta	indard)		
Replacement element part					
numbers are identical to contents of Boxes 2, 3, 4, and 5. Double stacking of K-size elements can be replaced by ingle KK	(Inlet) A	(B (Outlet)		
elements. /iton [°] is a registered			7		
non is a registered		• • • •			

C (Optional)

NOTES:

- Box 2. Nu mι usi
- Box 3. Rep nu cor an ele sin ele
- Box 5. Viton[°] is a registered trademark of DuPont Dow Elastomers.

Return Line Filter TF1 TF1 30 gpm 120 L/min Features and Benefits 300 psi Offered in pipe, SAE straight thread, flange and ISO 228 porting 20 bar Various Dirt Alarm[®] options Available with No-Element indicator Available with NPTF inlet and outlet female test ports Available with magnet inserts Available with housing drain plug Model No. of filter in photograph is TF11AZ10S.

Filter Up to 30 gpm (120 L/min) for 150 SUS (32 cSt) fluids Flow Rating: Housing Max. Operating Pressure: 300 psi (20 bar) **Specifications** Min. Yield Pressure: 1200 psi (80 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 270 psi (19 bar), per NFPA T2.6.1-2005 Temp. Range: -20°F to 225°F (-29°C to 107°C) **Bypass Setting:** Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar) Porting Head: **Cast Aluminum** Steel (TF1) or Stainless Steel (WTF1) Element Case: Weight of TF1-1A: 5.1 lbs. (2.3 kg) Weight of TF1-2A: 6.3 lbs. (2.9 kg) Element Change Clearance: 3.50" (90 mm)

LIIX

MRT

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [®] (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation		PAF1
Skydrol°	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
			MF2

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NFP/ particle counter (APC) calibra		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
AZ1	<1.0	<1.0	<1.0	<4.0	4.2	
AZ3	<1.0	<1.0	<2.0	<4.0	4.8	
AZ5	2.5	3.0	4.0	4.8	6.3	
AZ10	7.4	8.2	10.0	8.0	10.0	
AZ25	18.0	20.0	22.5	19.0	24.0	

Element	t DHC (gm)	
A3	16	
A10	13	
AZ1	25	
AZ3	26	
AZ5	30	
AZ10	28	
AZ25	28	
	Element Collapse Rating:	150 psid (10 bar)
	Flow Direction:	Outside In

Flow Direction: Outside In Element Nominal Dimensions: 3.0" (75 mm) O.D. x 4.5" (115 mm) long

TF1

 ΔP_{eler}

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{inter} at 15 gpm (57 L/min) for TF11AZ3PD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the TF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 7.5 psi (.52 bar) according to the graph for the AZ3 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the Viscosity Factor (V_{ρ}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta P_{\text{element}} = 7.5 \text{ psi } [.52 \text{ bar}]$ V_f = 175 SUS (37.2 cSt) / 150 SUS (32 cSt) = 1.2

$$\Delta P_{\text{riter}} = 3 \text{ psi} + (7.5 \text{ psi} * 1.2) = 12 \text{ psi}$$

 $\overline{\text{OR}}$
 $\Delta P_{\text{riter}} = .21 \text{ bar} + (.52 \text{ bar} * 1.2) = .83 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{stement}} = \text{Flow Rate x } \Delta P_{f}.$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP
A3	0.53	AA3	0.27
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03

TF1

Filter Model	How to Build a V	alid Model BOX 3	Number for a Schroeder TF1:	BOX 9		
Number]'				
Selection	Example: NOTE: Only BOX 1 BOX 2	box 9 may cor BOX 3	ntain more than one option BOX 4 BOX 5 BOX 6 BOX 7 BOX 8	BOX 9		
	TF1 - 1	– A3	P		-11A3PD5	
	BOX 1 BOX	(2	BOX 3	BOX 4	BOX 5	
	Filter Numb Series Eleme		Element Part Number	Seal Mater	ial Magnet Option	
	1		A3 = 3 μ E media (cellulose)	Omit = Buna N		
	TF1		A10 = 10 μ E media (cellulose)	H = EPR	= Magnet	
	WTF1		A25 = 25 μ E media (cellulose)	$V = Viton^{\circ}$	M inserts	
			AZ1 = 1 μ Excellement [®] Z-Media [®] (synthetic)	H.5 = Skydrol	•	
			AZ3 = 3 μ Excellement [°] Z-Media [°] (synthetic)	H.5 compat	ibility	
			AZ5 = 5 μ Excellement [®] Z-Media [®] (synthetic)			
			AZ10 = 10μ Excellement [*] Z-Media [*] (synthetic)			
			AZ25 = 25 μ Excellement [*] Z-Media [*] (synthetic)			
			AM10 = 10μ M media (reusable metal) AM25 = 25μ M media (reusable metal)			
			$AM60 = 60 \ \mu M \text{ media (reusable metal)}$			
		ŀ	AM150 = 150 μ M media (reusable metal)			
	BOX 6		BOX 8		BOX 9	
	Porting Options		Dirt Alarm [®] Options		Test Points	
	P = 1" NPTF		Omit = None		Omit = None	
	S = SAE-16	Visual	D = Pointer		$L = Two \frac{1}{4}$	
	^B = ISO 228 G-1"	Visual with	D5 = Visual pop-up		NPTF inlet and outlet	
	BOX 7	Thermal	D8 = Visual w/ thermal lockout		female test	
		Lockout	MS5 = Electrical w/ 12 in. 18 gauge 4-co	aductor cable	ports	
	Bypass Settings		MS5LC = Low current MS5		N = No-Element	
	Omit = 30 psi bypass		MS10 = Electrical w/ DIN connector (male	end only)	indicator	
	40 = 40 psi bypass		MS10LC = Low current MS10		G440 = ½" drain	
		Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wi MS12 = Electrical w/ 5 pin Brad Harrison c (male end only)		on bottom of housing	
NOTES:			MS12LC = Low current MS12			
Box 1. WTF1 includes a Anodized			MS16 = Electrical w/ weather-packed seal	ed connector		
Head and a Stainless Steel Bowl.			MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison n	nale connector		
			MST/LC = Electrical w/ 4 pin Brad Harrison in MS5T = MS5 (see above) w/ thermal lockd			
Box 3. Replacement element part numbers are identical to			MS5LCT = Low current MS5T			
contents of Boxes 3 and 4. E media		Els atular l	MS10T = MS10 (see above) w/ thermal lock	kout		
elements are		Electrical with	MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lock	out		
only available with Buna N seals.		Thermal Lockout	MS12LCT = Low current MS12T			
Box 4. For option V, all aluminum		u	MS16T = MS16 (see above) w/ thermal lock	kout		
parts are anodized. H.5			MS16LCT = Low current MS16T			
seal designation includes the following: EPR seals,			MS17LCT = Low current MS17T MS = Cam operated switch w/ ½" condu	uit		
stainless steel wire mesh on elements, and light oil		Electrical	female connection			
coating on housing exterior.		Visual	MS13 = Supplied w/ threaded connector MS14 = Supplied w/ 5 pin Brad Harrison c	5		
Viton [®] is a registered trademark			& light (male end)			
of DuPont Dow Elastomers. Skydrol° is		Electrical	MS13DCT = MS13 (see above), direct current, w/	thermal lockout		
a registered trademark of		Visual with Thermal	MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/	thermal lockout		
Solutia Inc.		Lockout	MS14DCLT = Low current MS14DCT			

MS14DCLCT = Low current MS14DCT

Box 6. B porting option supplied with metric mounting holes.

100 gpm

KF3

(4)

 Offered in pipe, SAE straight thread, flange and ISO 228 porting 	380 L/min KL3
Various Dirt Alarm [®] options	300 psi
 Available with No-Element indicator 	20 bar
 Available with NPTF inlet and outlet female test ports 	MLF1
Available with magnet inserts	
 Available with housing drain plug 	RLE
 Takes the standard "K" element in K, KK or 27K lengths 	GRTE
 Allows consolidation of inventoried replacement elements by using K-size elements 	MTA
 Also available with DirtCatcher[®] elements (KD & KKD) 	MTE
G Available with quality-protected GeoSeal Elements (GKF3)	Z
Part of the Schroeder Industries 2030 Initiative	AFT
	KFT
	B

Model No. of filter in photograph is KF31K10SD5.

Filter Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids Housing Max. Operating Pressure: 300 psi (20 bar) **Specifications** Min. Yield Pressure: 1000 psi (70 bar), per NFPA T2.6.1 **Rated Fatigue Pressure:** 290 psi (20 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Temp. Range: Bypass Setting: Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar) Porting Head: **Die Cast Aluminum** Element Case: Steel Weight of KF3-1K: 10.5 lbs. (4.8 kg) Weight of KF3-2K: 14.2 lbs. (6.4 kg) Weight of KF3-3K: 18.5 lbs. (8.4 kg) Element Change Clearance: 1.50" (40 mm) for all lengths

Type FluidAppropriate Schroeder MediaFluid
CompatibilityAccessories
For Tank-
MountedPetroleum Based FluidsAll E media (cellulose), Z-Media* and ASP* media (synthetic)Accessories
For Tank-
MountedHigh Water ContentAll Z-Media* and ASP* Media (synthetic)10 and 25 μ Z-Media* (synthetic), 10 μ ASP* media (synthetic)Accessories
For Tank-
MountedWater Glycols3, 5, 10 and 25 μ Z-Media* (synthetic), 3, 5, and 10 μ ASP* Media (synthetic)Accessories
For Tank-
MountedPhosphate EstersAll Z-Media* (synthetic) with H (EPR) seal designation and 3 and 10 μ
E media (cellulose) with H (EPR) seal designation and all ASP* media (synthetic)Accessories
For Tank-
MountedSkydrol3, 5, 10 and 25 μ Z-Media* (synthetic) with H.5 seal designation and all ASP* media (synthetic)Accessories
For Tank-
MountedMAF1Skydrol*3, 5, 10 and 25 μ Z-Media* (synthetic) with H.5 seal designation (EPR seals and stainless stee
wire mesh in element, and light oil coating on housing exterior) and all ASP*MAF1ME2

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

KF -3

					Ratio Per ISO 4572, utomated particle calibrated per ISO	counter (APC)	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element				ß _× ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
KZ1/KKZ1/27KZ1				<1.0	<1.0	<1.0	<4.0	4.2	
KZ3/KKZ3/27KZ3				<1.0	<1.0	<2.0	<4.0	4.8	
KZ5/KKZ5/27KZ5				2.5	3.0	4.0	4.8	6.3	
KZ10/KKZ10/27K	Z10			7.4	8.2	10.0	8.0	10.0	
KZ25/KKZ25/27K	Z25			18.0	20.0	22.5	19.0	24.0	
KZW1				N/A	N/A	N/A	<4.0	<4.0	
KZW3/KKZW3				N/A	N/A	N/A	4.0	4.8	
KZW5/KKZW5				N/A	N/A	N/A	5.1	6.4	
KZW10/KKZW10				N/A	N/A	N/A	6.9	8.6	
KZW25/KKZW25	5			N/A	N/A	N/A	15.4	18.5	
	I		l		l				
DHC	Elt	DHC	Flowerst	DHC	DH	-	DHC	DHC DHC	

	DHC												
Element	(g)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long 3.9" (99 mm) O.D. x 18.0" (460 mm) long KK:

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

KF3

 $\Delta P_{\rm housing}$ KF3 $\Delta P_{\rm house}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine ΔP_{mer} at 70 gpm (265.3 L/min) for KF31KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KF3 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4 \text{ psi } [.227 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{resur}} = 4 \text{ psi} + (3 \text{ psi} * 1.1) = 7.7 \text{ psi}$ \underline{OR} $\Delta P_{\text{resur}} = .27 \text{ bar} + (.21 \text{ bar} * 1.1) = .50 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	K3K	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02
KZW1	0.43	2KZW1	-		
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

KF3 Return Line Filter

Filter Model Number Selection	BOX 1 BOX 2 BOX 3 BOX 4 KF3 -	Number for a Schroeder KF3: BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 Image: state stat	9 BOX 10
Highlighted product eligible for Concernences	BOX 1 BOX 1 BOX 2 Filter Series KF3 GKF3 (GeoSeal') WKF3 (Water) BOX 2 Number & Size of Elements 1K, KK,27K 2K 3K GeoSeal' 1KG, KKG,27KG 2KG 3KG BOX 5 Seal Material Omit = Buna N H = EPR V = Viton' H.5 = Skydrol' H.5 = Skydrol' H.5 = Skydrol' W = Buna N with anodized W = parte	BOX 3 Media Type Omit = E media (cellulose) AS = Anti-Static Pleat Media $Z = Excellement^* Z-Media^*$ (sy $ZW = Aqua-Excellement^* ZW m$ W = Water Removal media M = M Media (reusable metal) $DZ = DirtCatcher^* Excellement^*$ Water System Element Opt KM10 = K size 25 μ M media (reusa KM25 = K size 10 μ M media (reusa KM60 = K size 60 μ M media (reusa KM150 = K size 150 μ M media (reusa KM260 = K size 260 μ M media (reusa BOX 6 BC	BOX 4 Micron Rating 1 = 1 μ (Z, ZW and DZ media) 3 = 3 μ (E, AS, Z, ZW and DZ media) 3 = 3 μ (E, AS, Z, ZW and DZ media) 5 = 5 μ (AS, Z, ZW and DZ media) 10 = 10 μ (E, AS, Z, ZW, M and DZ media) 10 = 10 μ (E, Z, ZW, M and DZ media) 25 = 25 μ (E, Z, ZW, M and DZ media) 60 = 60 μ (M media) BOX 7 Bypass Settings Omit = 30 psi cracking 40 = 40 psi bypass
DTES: x 2. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. ZW media not available in 27K.	BC Dirt Alarn Omit = None Uisual Uisual D = Pointer D5 = Visual pop-u Visual with Thermal Lockout D8 = Visual w/ the MS5 = Electrical w/ MS5LC = Low current I MS10 = Electrical w/ MS10LC = Low current I	$M = Magnet$ $S = SAE-24$ $F = 1\frac{1}{2}$ " SAE-4- $B = ISO 228 G$ n° Options p rmal lockout 12 in. 18 gauge 4-conductor cable MS5 DIN connector (male end only)	50 = 50 psi cracking (req. for HF4) 60 = 60 psi bypass BOX 10 BOX 10 Comit = None L = Two 1/4" NPTF inlet and outlet test ports N = No-Element indicator G426 = 3/4" drain on bottom of housing G440 = 1/2" drain on bottom of housing
 x 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. x 5. For options H, W, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[*] is a registered trademark of DuPont Dow Elastomers. Skydrol[*] is a registered trade- mark of Solutia Inc. x 7. For option F, bolt thread depth .63" (16 mm). B porting option supplied with metric mounting holes. x 10. Option L not available with MS Dirt Alarm 	Electrical MS11 = Electrical W/ MS12 = Electrical W/ MS12 = Electrical W/ MS16 = Electrical W/ MS16 = Electrical W/ MS16 = Electrical W/ MS16LC = Low current I MS17LC = Electrical W/ MS5T = MS5 (see abc MS5LCT = Low current I MS10LT = MS10 (see ab MS10LT = Low current I MS10LT = Low current I MS16LT = Low current I MS16LT = Low current I MS16LT = Low current I MS17LCT = Low current I	12 ft. 4-conductor wire pin Brad Harrison connector (male end only) MS12 weather-packed sealed connector MS16 4 pin Brad Harrison male connector we) w/ thermal lockout MS5T vove) w/ thermal lockout MS10T vove) w/ thermal lockout MS10T vove) w/ thermal lockout MS16T MS17T d switch w/ ½" conduit female connection threaded connector & light pin Brad Harrison connector & light (male end) vove), direct current, w/ thermal lockout	

NOT

- Box
- Box
- Box
- Box
- Box

Return Line Filter with Threaded Bowl

KL3

Model No. of filter in photograph is k	 A provincient of the second provinc	120 gpm <u>455 L/min</u> 300 psi 20 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT
			RTI
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids for P24, S24, F24 and B24 porting Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids for P32, S32 and B32 porting	Filter Housing Specifications	LRT ART
Max. Operating Pressure:	300 psi (20 bar)		
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1		BRT
Rated Fatigue Pressure:	300 psi (20 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 68 psi (4.7 bar)		BFT
Porting Head: Element Case:	Cast Aluminum Steel		QT
Weight of KL3-18LC: Weight of KL3-1K: Weight of KL3-2K	20.00 lbs. (9.1 kg) 14.75 lbs. (6.7 kg)		КТК

Type FluidAppropriate Schroeder MediaFluidAccessoriesPetroleum Based FluidsAll E media (cellulose), Z-Media* and ASP* media (synthetic)FluidAccessoriesHigh Water ContentAll Z-Media* and ASP* media (synthetic)MountedFor Tank-MountedInvert Emulsions10 and 25 µ Z-Media* (synthetic), 10 µ ASP* media (synthetic)FiltersFiltersWater Glycols3, 5, 10 and 25 µ Z-Media* (synthetic), 3, 5, and 10 µ ASP* media (synthetic)Phosphate EstersAll Z-Media* with H (EPR) seal designation and all ASP* media (synthetic)PAF1

Weight of KL3-2K:

Weight of KL3-3K:

Element Change Clearance:

18.50 lbs. (8.4 kg)

2.50" (64 mm)

22.75 lbs. (10.3 kg)

MF2

KL3

Return Line Filter with Threaded Bowl

	Image: definition of the second se						1K=15. 2K=25.	2.00 (51) 40) 75 (400) 00 (635) 39 (874)					
t								ISO 4572/NFPA			Filtration F	Ratio per ISO 16	889
2						Using a		particle coun d per ISO 4402		Us		ibrated per ISO	
	Element					ß _x ≥ 75		3 _x ≥ 100	ß _x ≥ 20	۵۵ ۵۵	(c) ≥ 200	ß _× (c) ≥	1000
'	KZ1/KKZ1/2	7KZ1				<1.0		<1.0	<1.0)	<4.0	4.	2
	KZ3/KKZ3/2	7KZ3				<1.0		<1.0	<2.0)	<4.0	4.	8
	KZ5/KKZ5/2	7KZ5				2.5		3.0	4.0		4.8	6.	3
	KZ10/KKZ10)/27KZ1	0			7.4		8.2	10.0)	8.0	10	.0
	KZ25/KKZ25	5/27KZ2	5			18.0		20.0	22.5	;	19.0	24	.0
	KZW1					N/A		N/A	N/A		<4.0	<4	.0
	KZW3/KKZV	V3				N/A		N/A	N/A		4.0	4.	8
	KZW5/KKZV	V5				N/A		N/A	N/A		5.1	6.	4
	KZW10/KKZ	W10				N/A		N/A	N/A		6.9	8.	6
	KZW25/KKZ	W25				N/A		N/A	N/A		15.4	18	.5
	18LCZ1					<1.0		<1.0	<1.0)	<4.0	4.	2
	18LCZ3					<1.0		<1.0	<2.0)	<4.0	4.	8
	18LCZ5					2.5		3.0	4.0		4.8	6.	3
	18LCZ10					7.4		8.2	10.0)	8.0	10	.0
	18LCZ25					18.0		20.0	22.5	5	19.0	24	.0
	Element	DHC (g)	Element	DHC (g)	Element		DHC (g)	Element	DHC (g)	Element	DHC (g)	Element	DHC (g)
	KZ1	112	KKZ1	224	27KZ1		336	KZW1	61			18LCZ1	224
	KZ3	115	KKZ3	230	27KZ3		345	KZW3	64	KKZW3	128	18LCZ3	230
	KZ5	119	KKZ5	238	27KZ5		357	KZW5	63	KKZW5	126	18LCZ5	238
	KZ10	108	KKZ10	216	27KZ10		324	KZW10	57	KKZW10		18LCZ10	216
	KZ25	93	KKZ25	186	27KZ25		279	KZW25	79	KKZW25		18LCZ25	186
				Elen		ose Rating: Direction:	150 psi Outside	d (10 bar) fo	r standa	rd element	S		
				Element N			K: KK:	3.9" (99 mr 3.9" (99 mr 3.9" (99 mr			-		

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long 18LC: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

Element Performance Information & Dirt Holding Capacity

Return Line Filter with Threaded Bowl

KL3

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{mer} at 70 gpm (265.3 L/min) for KL31KZ10P24D5L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the KL3 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 7 \text{ psi} + (3 \text{ psi} * 1.1) = 10.7 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .48 \text{ bar} + (.21 \text{ bar} * 1.1) = .71 \text{ bar}$ Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \, \Delta P_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	18LC3	0.12
K10	0.09	2K10/ KK10	0.05	18L10	0.05
K25	0.02	2K25/ KK25	0.01	18LCZ1	0.10
KAS3	0.10	2KAS3/ KKAS3	0.05	18LCZ3	0.05
KAS5	0.08	2KAS5/ KKAS5	0.04	18LCZ5	0.04
KAS10	0.05	2KAS10/ KKAS10	0.03	18LCZ10	0.03
KZW1	0.43	2KZW1	-	18LCZ25	0.02
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

Return Line Filter with Threaded Bowl

Filter	How to Build	d a Valid Mod	el Number for a Schr	oeder KL3:		
Model	BOX 1 B	OX 2 BOX 3		OX 6 BOX 7 BOX 8	BOX 9 BOX	10
Number Selection	KL3 -					
Selection	¹ ² KL3 – 18LC –	In 1 NOTE: One op 3 4 5 -Z - 1 - H	6 7 8 9 - P24 - D5 - L -	Option 2 NOTE: Or 10 1 2 3 10 KL3 – 2K – Z	-1 - P24 -	⁷ 8 9 10 - D5 - L -
		- <mark>Z - I - П</mark> - ЗОХ 2	BOX 3	BOX 4	- 1	
	DOVI	ption 1	Option 1	Option	1	
	Series	Size	Media Type	Micron Ra	<u> </u>	
	KL3		 E media (cellulose) Excellement[®] Z-Media[®] (synth 	1 = 1 μ (Z-Me 3 = 3 μ (E and	edia") d Z-Media")	
	GKL3 (GeoSeal [®])	Wa	ter System Element Option		edia [®])	
			= 10 μ M media (reusable metal) = 25 μ M media (reusable metal)	10= 10µ (Ean	d Z-Media [°])	
	WKL3 (Water)		= 60 μ M media (reusable metal)	25 = 25 μ (E and	d Z-Media [°])	
			= 150 μ M media (reusable metal) = 260 μ M media (reusable metal)			
	BOX 2 Option 2		BOX 3 Option 2	BOX 4 Option 2		BOX 5
	Number & Size of Elements	М	edia Type	Micron Rat	ing	Seal Material
	1K, KK,27K 2K	Omit = E media (Z = Excellem	cellulose) ent [°] Z-Media [°] (synthetic)	$1 = 1 \mu$ (Z, ZW and DZ r $3 = 3 \mu$ (E, AS, Z, ZW an		Omit = Buna N H = EPR
	ЗК	AS = Anti-Stat	ic Pleat Media (synthetic) cellement [®] ZW media	$5 = 5 \mu$ (AS, Z, ZW and 10 = 10 μ (E, AS, Z, ZW, M	DZ media)	$V = Viton^{\circ}$ H.5 = Skydrol [°]
		W = Water Re		$25 = 25 \mu$ (E, Z, ZW, M and $60 = 60 \mu$ (M media)		Compatibility W = Buna N
			ner [°] Excellement [°] Z-Media [°]	$00 = 00 \mu$ (writedia)]	W – Dunan
	BC	X 6	BOX 7			
	Por P24 = 1½"NPTF	ting	Bypass Setting Omit = 30 psi cracking			
	S24 = SAE-24		40 = 40 PSI Bypass			
	$F24 = \frac{11/2"}{Code 61}$	_	50 = 50 psi cracking (ree	q. for HF4)		
S:	B24 = ISO 228 G- P32 = 2" NPTF	1/2"				
. Double and triple stacking of K-size elements can be	S32 = SAE-32 B32 = SO 228 G-2	п				
replaced by single KK and 27K elements,			DOV 0		DOV 0	DOV 10
respectively. Number of elements must equal			BOX 8		BOX 9 Test Port	BOX 10 Bowl Drain
1 when using KK or 27K elements. Replacement		Comit =	Dirt Alarm [®] Options		Options Omit = None	Option Omit= None
element part numbers are identical to contents	Visua	al D5 =	Visual pop-up		L = Two ¼"NPTF inlet and	
of Boxes 2, 3, 4, and 5. ZW media not available in 27K	Visual with Therma Lockou	tD8 =	Visual w/ thermal lockout	du ataw ashi a	outlet female test ports	
length. Example: 18LCZ3V		MS5LC =	Electrical w/ 12 in. 18 gauge 4-con Low current MS5			
For options H, W, V, and		MS10LC =	Electrical w/ DIN connector (male Low current MS10			
H.5, all aluminum parts are anodized.H.5 seal	Electrica		Electrical w/ 12 ft. 4-conductor wir Electrical w/ 5 pin Brad Harrison co			
designation includes the following: EPR seals,			Low current MS12 Electrical w/ weather-packed seale	ed connector		
stainless steel wire mesh on elements, and light oil			Low current MS16 Electrical w/ 4 pin Brad Harrison m	ale connector		
coating on housing exterior. Viton [®] is a registered trade-		MS5LCT =	MS5 (see above) w/ thermal locko Low current MS5T			
mark of DuPont Dow	Electrical witl	MS10LCT =	MS10 (see above) w/ thermal lock Low current MS10T			
Elastomers. Skydrol [®] is a registered trademark of	Thermal Lockou	t MS121 = MS12LCT =	MS12 (see above) w/ thermal lock Low current MS12T			
Solutia Inc.		MS16LCT =	MS16 (see above) w/ thermal lock Low current MS16T	out		
 B24 and B32 porting options supplied with 	Electrical Visua	MS13 =	Low current MS17T Supplied w/ threaded connector &			
metric mounting holes. 18LC elements require 2"		MS14 = MS13DCT =	Supplied w/ 5 pin Brad Harrison co MS13 (see above), direct current, v			
ports for up to 120 gpm. K size elements require 1½"	Electrical Visual with Thermal Lockou	t MS14DCT =	Low current MS13DCT MS14 (see above), direct current, v Low current MS14DCT	v/ thermal lockout		
ports for up to 100 gpm.						

NOTES:

Box 5.

Box 2.

KL3

- Box 6.
 - ports for up to 100 gpm.

	Return Line Filter with 2" Ports	LF1	IRF	
			TF1	
of filter in photograph is LF118LC	<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header>	120 gpm 455 L/min 300 psi 20 bar	TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT	
			RTI	
		Filtor	LRT	
	o 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids	Filter Housing	ART	
	psi (20 bar), per NFPA T2.6.1	Specifications		

Model No. of

M Min. Yield Pressure: 1000 psi (70 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 250 psi (17 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Temp. Range: Cracking: 30 psi (2.1 bar) Full Flow: 60 psi (4.1 bar) Bypass Setting: Porting Head: Cast Aluminum Element Case: Steel 2" NPTF, 2¹/₂-12 SAE Straight Available Porting: Weight of LF1-18LC: 17.5 lbs. (7.9 kg) Element Change Clearance: 2.0" (55 mm)

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media [*] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation		PAF1
Skydrol®	3, 5, 10 and 25 μ Z-Media * (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
			MF2

Return Line Filter with 2" Ports

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 Ited per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\hat{B}_x(c) \ge 1000$
18LCZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LCZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LCZ5	2.5	3.0	4.0	4.8	6.3
18LCZ10	7.4	8.2	10.0	8.0	10.0
18LCZ25	18.0	20.0	22.5	19.0	24.0
Element	DHC (gm)				
18LCZ1	224				
18LCZ3	230				
18LCZ5	238				
18LCZ10	216				
18LCZ25	186				

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

Return Line Filter with 2" Ports

 $\Delta P_{\text{housing}}$ LF1-2" $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

$$\Delta P_{\text{fiture}} = \Delta P_{\text{housing}} + (\Delta P_{\text{alegent}} * V_{\text{c}})$$

Exercise:

Determine ΔP_{mer} at 70 gpm (265.3 L/min) for LF118LCZ3P32D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{touring}}$ at 70 gpm. In this case, $\Delta P_{\text{touring}}$ is 2 psi (.14 bar) on the graph for the LF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3.5 psi (.24 bar) according to the graph for the 18LCZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] | \Delta P_{\text{element}} = 3.5 \text{ psi } [.24 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 2 \text{ psi} + (3.5 \text{ psi} * 1.1) = 5.9 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .14 \text{ bar} + (.24 \text{ bar} * 1.1) = .40 \text{ bar}$

Return Line Filter with 2" Ports

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Filter Model Number Selection	BOX 1 BOX 2 LF1	BOX 3 of t Element Size and Media Sec LC3 = LC size 3 μ E media (cellulose) LC10 = LC size 10 μ E media (cellulose) LC21 = LC size 1 μ Excellement [*] Z-Media ^{**} (synthetic) V =	BOX 4 BOX 4 al Material = Buna N = EPR = Viton"
PortingDirt Alarm® OptionsAdditional OptionsP32 = 2" NPTFOmit = NoneOmit = NoneS32 = SAE-32D = PointerD = PointerB32 = ISO 228 G-2"D = Visual pop-upL = Two ½" NPTF inlet and outlet female test portsBOX 6Visual with Thermal LockoutD8 = Visual w/ thermal lockoutG426 = ¾" drain on bottom of housingOmit = 30 PSI Bypass 50 = 50 PSI BypassMS51C = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)G440 = ½" drain on bottom of housing			$LCZ5 = LC \text{ size } 5 \mu \text{ Excellement Z-Media (synthetic)}$ $LCZ10 = LC \text{ size } 10 \mu \text{ Excellement Z-Media (synthetic)}$	
P32 = 2" NPTF Omit = None Omit = None S32 = SAE-32 D = Pointer L = Two ½" NPTF B32 = ISO 228 G-2" Visual D5 = Visual pop-up L = Two ½" NPTF BOX 6 Visual with Thermal D8 = Visual w/ thermal lockout G426 = ¾" drain on bottom of housing Omit = 30 PSI Bypass MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable G440 = ½" drain on bottom of housing S0 = 50 PSI Bypass MS10 = Electrical w/ DIN connector (male end only) G440 = ½" drain on bottom of housing		BOX 5	BOX 7	BOX 8
S32 = SAE-32 D = Pointer L = Two ¼" NPTF B32 = ISO 228 G-2" Visual D5 = Visual pop-up outlet female BOX 6 Visual with Thermal D8 = Visual w/ thermal lockout G426 = ¾" drain on Bypass MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 G440 = ½" drain on Omit = 30 PSI Bypass MS10 = Electrical w/ DIN connector (male end only) G440 = ½" drain on bottom of		Porting	Dirt Alarm [®] Options	Additional Options
B32 ISO 228 G-2" Visual D5 Visual pop-up inlet and outlet female test ports B0X 6 Visual with Thermal Lockout D8 Visual w/ thermal lockout G426 ¾" drain on bottom of housing Omit 30 PSI Bypass MS5 Electrical w/ 12 in. 18 gauge 4-conductor cable G440 ½" drain on bottom of housing 50 50 50 PSI Bypass MS10 Electrical w/ DIN connector (male end only) G440 ½" drain on bottom of housing		P32 = 2" NPTF	Omit = None	Omit = None
BOX 6 Visual with Thermal D8 = Visual w/ thermal lockout G426 ¾" drain on bottom of housing Omit = 30 PSI Bypass MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable G440 ½" drain on bottom of housing 50 = 50 PSI Bypass MS10 = Electrical w/ DIN connector (male end only) G440 ½" drain on bottom of housing			Visual	
Bypass Thermal Lockout D8 = Visual w/ thermal lockout G426 = ¾" drain on bottom of housing Omit = 30 PSI Bypass MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable G440 = ½" drain on bottom of housing 50 = 50 PSI Bypass MS10 = Electrical w/ DIN connector (male end only) G440 = ½" drain on bottom of housing				
Omit = 30 PSI BypassMS5LC = Low current MS5G440½" drain on bottom of bouring50 = 50 PSI BypassMS10 = Electrical w/ DIN connector (male end only)G440½" drain on bouring			Thermal D8 = Visual w/ thermal lockout Lockout	bottom of
MSTOLC = Low current MSTO			MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10	$G_{440} = \frac{1}{2}$ " drain on
MS11 = Electrical w/12 ft. 4-conductor wire Electrical MS12 = Electrical w/5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16L = Low current MS16 MS16L = Electrical w/4 pin Brad Harrison male connector			Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
NOTES: MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Box 2. Replacement element part Electrical MS10LCT = Low current MS10T	Box 2. Replacement element part		MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout	
numbers are a combination of Boxes 2, 3, and 4. Example: 18LCZ3V MS12T = MS12 (see above) w/ thermal lockout MS12LT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16T = Low current MS16T	of Boxes 2, 3, and 4. Example: 18LCZ3V		Thermal Lockout MS12LT = Low current MS12T MS12LCT = Low current MS12T MS16 (see above) w/ thermal lockout	
Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. MS17LCT = Low current MS17T MS = Cam operated switch w/ ½" conduit female connection MS17LCT = Low current MS17T MS = Cam operated switch w/ ½" conduit female connection MS17LCT = Low current MS17T MS = Cam operated switch w/ ½" conduit female connection MS13 = Supplied w/ 5 pin Brad Harrison connector & light (male end) Viton* is a registered trade- mark of DuPont Dow Electrical MS13DCT = Elastomers. Skydrol* is a registered trademark of MS14DCT = Low current MS13DCT	H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton [*] is a registered trade- mark of DuPont Dow Elastomers. Skydrol [*] is a registered trademark of		MS17LCT = Low current MS17T MS = Cam operated switch w/ ½" conduit female connection Electrical Visual MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) Electrical Visual MS13DCT = MS13 (see above), direct current, w/ thermal lockout Visual MS13DCLT = Low current MS13DCT with MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
Solutia Inc. Box 5. B porting option supplied			Lockout MS14DCLCT = Low current MS14DCT	

Box 5. B porting option supplied with metric mounting holes.

LF1

	Top-Ported Return Line Filter	MLF1	IRF
			TF1
A FR		200 gpm	KF3
	Features and wBenefits	760 L/mir	KL3
	 Equipped with inlet and outlet manifolds 	300 psi	1 5 1
	 Meets HF4 automotive standard Offered in pipe and flange porting 	20 bar	LF1
	 Available in 2, 4 or 6 element configurations 		MLF1
	 Various Dirt Alarm[®] options A situate with NETS in broad as that found as 		RLD
	 Available with NPTF inlet and outlet female test ports 		
	Available with housing drain plugs		GRTB
Same in the second	G Available with quality-protected GeoSeal [®] Elements (GMLF1)		MTA
			МТВ
			ZT
			AFT
			VET
			KFT
Model No. of filter in photograph is MLF14	4K10PD.		RT
			RTI
Flow Rating: Un	o to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure: 30		Housing	ART
	00 psi (70 bar), per NFPA T2.6.1	Specifications	
	0 psi (17 bar), per NFPA T2.6.1-2005		BRT
Temp. Range: -20	0°F to 225°F (-29°C to 107°C)		TRT
	acking: 25 psi (2 bar) Il Flow: 60 psi (4 bar)		INI
Porting Head: An	nodized Cast Aluminum		BFT
Element Case: Ste Weight of MLF1-2K: 44.			QT
Weight of MLF1-4K: 50. Weight of MLF1-6K: 58.).0 lbs. (23.0 kg)		
Element Change Clearance: 2.0	-		KTK
			LTK
			MDT
			MRT
Type Fluid App	propriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids All I	E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility	For Tank-
High Water Content All 2	Z-Media [®] (synthetic)		Mounted
	and 25 μ Z-Media [*] (synthetic)		Filters
	5, 10 and 25 μ Z-Media [®] (synthetic)		
	Z-Media" (synthetic) with H (EPR) seal designation and 3 and 10 µ E dia (cellulose) with H (EPR) seal designation and all ASP" media (synthetic)		PAF1

 media (cellulose) with H (EPR) seal designation and all ASP* media (synthetic)

 Skydrol*
 3, 5, 10 and 25 μ Z-Media* (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior and all ASP* media (synthetic).

Top-Ported Return Line Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW3	N/A	N/A	N/A	<4.0	4.8
KZW5	N/A	N/A	N/A	5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5
KZ10 KZ25 KZW3 KZW5 KZW10	7.4 18.0 N/A N/A N/A	8.2 20.0 N/A N/A N/A	10.0 22.5 N/A N/A N/A	8.0 19.0 <4.0 5.1 6.9	10.0 24.0 4.8 6.4 8.6

Element	DHC (gm)						
2KZ1	224	4KZ1	448	6KZ1	672		
2KZ3	230	4KZ3	460	6KZ3	690	KZW3	64
2KZ5	238	4KZ5	476	6KZ5	714	KZW5	63
2KZ10	216	4KZ10	432	6KZ1	648	KZW10	67
2KZ25	186	4KZ25	372	6KZ25	558	KZW25	79

Element Collapse Rating: 150 psid (10 bar) for standard elements Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Top-Ported Return Line Filter

MLF1

 $\Delta P_{\text{housing}}$ MLF1 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

4KZ/2KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 150 gpm (568.5 L/min) for MLF14K10PD using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 150 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the MLF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 150 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KKZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{r}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 15 \text{ psi} [1 \text{ bar}] | \Delta P_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{mer} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$ $\frac{OR}{\Delta P_{mer}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = Flow Rate x \Delta P_{f_{c}} Plug$ this variable into the overall pressure

drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW3	0.32	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW5	0.28	2KZW3/ KKZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5/ KKZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14			6KAS10/	0.01

Top-Ported Return Line Filter

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder MLF1: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 MLF1				
	BOX 1 BOX Filter Series MLF1 GMLF1 (GeoSeal') BOX 1 BOX Size Elema 2K, KK 4k GMLF1 (GeoSeal')	Der & e of ents Media Omit = E media (cellulos Z = Excellement' Z- K K Z = Excellement' Z- K K AS = Anti-Static Pleat K ZW = Aqua-Excelleme Ga DZ = DirtCatcher' with W = W media (water	Media° (synthetic) Media (synthetic) nt™ ZW media n Excellement* Z-Media* removal)	BOX 4 Micron Rat $1 = 1 \mu Z, ZW, and DZ$ $3 = 3 \mu AS,E, Z, ZW, and 5 = 5 \mu AS, Z, ZW, DZ10 = 10 \mu AS, E, M, Z, ZW25 = 25 \mu E, M, Z, ZW and 60 = 60 \mu M media150 = 150 \mu M media$	² media nd DZ media media W, & DZ media
	BOX 5 Seal Material Omit = Buna N H = EPR $V = Viton^*$ $H.5 = Skydrol^*Compatib$	BOX 6 Magnet Option Omit = None M = Magnet inserts bility BOX 9	BOX 7 Porting P = 2½"NPTF F = 2½"SAE 4-bolt flange Co	Byp ode 61 Omit = 25	IPSI Bypass
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Options Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/thermal lockout		Additional COmit= None L = Two $\ensuremath{\scale{2}}$ NPTF in female test portG426= $\ensuremath{\scale{2}}$ drain on botG440= $\ensuremath{\scale{2}}$ drain on bot	let and outlet ts tom of housing
and triple stacking e elements can be d by KK and 27K ts, respectively.	Electrical MS Electrical MS MS	MS5= Electrical w/ 12 in. 18 gauge 4-cd AS5LC= Low current MS5 MS10= Electrical w/ DIN connector (ma S10LC= Low current MS10 MS11= Electrical w/ 12 ft. 4-conductor w MS12= Electrical w/ 12 ft. 4-conductor w MS12= Low current MS12 MS16= Electrical w/ weather-packed see S16LC= Low current MS16 S17LC= Electrical w/ 4 pin Brad Harrison	le end only) vire connector (male end only) aled connector		
or of elements must when using KK or ments. ement element part rs are identical to ts of Boxes 2, 3, 4, (25 is not available PR seals. ions H, V, and	MS N Electrical with MS1 Thermal Lockout MS1 N MS1 N	MSST = MS5 (see above) w/ thermal loc SSLCT = Low current MSST MS10T = MS10 (see above) w/ thermal lo 10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lo 12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lo 16LCT = Low current MS16T	kout ckout ckout		
aluminum parts dized. H.5 seal ation includes the ng: EPR seals, stainless ire mesh nents, and light ing on housing r. Viton [*] is a registered	Electrical Visual MS13 Electrical Visual with Thermal Lockout MS13	17LCT = Low current MS17T MS = Cam operated switch w/ ½" con MS13 = Supplied w/ threaded connector MS14 = Supplied w/ 5 pin Brad Harrison 3DCT = MS13 (see above), direct curren DCLCT = Low current MS13DCT 4DCT = MS14 (see above), direct curren DCLCT = Low current MS14DCT	r & light connector & light (male end) ;; w/ thermal lockout		
ark of DuPont Dow	·				

Box 2. Double a of K-size replaced elements Number equal 2 w 27K elem

MLF1

- Box 3. Replacem numbers contents and 5. K2 with EPR
- Box 5. For option H.5, all alu are anod designati following steel wire on eleme oil coatin exterior. \ trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.

Medium Pressure Filter RLD

Model No. of filter in photograph is RL	 Features and Benefits Lightweight duplex filter constructed of aluminum High chromium content aluminum alloy is wat tolerant – anodization is not required for high water-based fluids (HWBF) Filter housings are designed to withstand pressure surges as well as high static pressure loads Screw-in bowl allows the filter element to be easily removed for replacement or cleaning Standard model supplied with drain plugs Standard Viton* seal on filter housing Filter contains an integrated equalization value Pressure is equalized between filters by raising the change-over lever prior to switching it to tr relevant filter side 	24 bar	КF3 КL3 LF1 MLF1 RLD GRTB МТА МТА МТВ ZT АFT КFT RT1 LRT
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	350 psi (24 bar)	Housing	ART
Min. Yield Pressure:	Contact factory	Specifications	BRT
Rated Fatigue Pressure: Temp. Range:	350 psi (24 bar) -22°F to 250°F (-30°C to 121°C)		Ditt
Bypass Setting:	Standard: 102 psi (7 bar) Optional: 43 psi (3.0 bar)		TRT
Porting Head: Element Case:	Aluminum Aluminum		BFT
Weight of RLD-25DN: Weight of RLD-40DN:	26 lbs. (11.8 kg) 29 lbs. (13.0 kg)		QT
Element Change Clearance:	25DN: 3.5" (89 mm) 40DN: 3.5" (89 mm)		KTK
			LTK
			MRT
Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
	All Z-Media [®] (synthetic)	Compatibility	For Tank-
-	All Z-Media [®] (synthetic)	_	Mounted
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3, 6, 10 and 25 μ Z-Media [*] (synthetic)		PAF1
			MAF1

RLD Medium Pressure Filter

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				per ISO 16889 ted per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
25/40DNZ3	<1.0	<1.0	<2.0	<4.0	4.8
25/40DNZ6	2.5	3.0	4.0	4.8	6.3
25/40DNZ10	7.4	8.2	10.0	8.0	10.0
25/40DNZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
25DNZ3	57	40DNZ3	105	
25DNZ6	62	40DNZ6	115	
25DNZ10	52	40DNZ10	104	
25DNZ25	48	40DNZ25	94	

Element Collapse Rating: 290 psid (20 bar) Flow Direction: Outside In Element Nominal Dimensions: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

Medium Pressure Filter

$\Delta P_{\rm housing}$ RLD $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

RL

Exercise:

Determine ΔP_{riter} at 70 gpm (265.3 L/min) for RLD25DNZ5VF2440VM using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 14 psi (.96 bar) on the graph for the RLD housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 25DNZ5V element.

Because the viscosity in this sample is 160 SUS (44 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 14 \text{ psi} [.96 \text{ bar}] | \Delta P_{\text{element}} = 8 \text{ psi} [.55 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 14 \text{ psi} + (8 \text{ psi} * 1.1) = 22.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .96 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.6 \text{ bar}$

Medium Pressure Filter

Filter Model Number Selection	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7						
	BOX 1	BOX 2	BOX 3	BOX 4			
	Filter Series	Length of Elements (cm)	Element Size and Media	Element Seal Material			
		25	DNZ5 = DN size 5 μ synthetic media	Omit = Buna N			
	RLD	40	DNZ10 = DN size 10 μ synthetic media	V =Viton°			
			DNZ25 = DN size 25 μ synthetic media				
			DNM25 = DN size 25 μ M media (reuseable metal)				
	DNM50 = DN size 50 μ M media (reuseable metal)						
			DNM100 = DN size 100μ M media (reuseable metal)				
			$DNM200 = DN$ size 200 μ M media (reuseable metal)				

BOX 5	BOX 6	BOX 7	
Porting	Bypass Setting	Dirt Alarm [®] Options	
F24 = 1½" SAE 4-bolt flange Code 61	Omit = 102 psi cracking	Omit= None	
S24 = SAE-24(1½")	40 = 43 psi cracking	Visual	VM = Visual pop-up w/manual reset
		Electrical	DW = AC/DC 3-wire (NO or NC)

VM = Manual Reset

DW = AC/DC 3-wire (NO or NC)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 40DNZ10

RL

D

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton^{*} is a registered trade-mark of DuPont Dow Elastomers.

. ~ ~

Tank-Mounted Return Line Filter	GRTB	IRF TF1
Features and Benefits Patented GeoSeal' Elements Various Dirt Alarm [®] options Cost optimized for in-tank applications Plastic bowl and cap lower cost and minimize weight	100 gpm <u>380 L/mir</u> 100 psi 7 bar	KF3 KL3 LF1
 UV resistant cap Same day shipment model available 		MLF1
Part of Schroeder Industries' Energy Sustainability Initiative		RLD
		GRTB
		MTA
		MTB
		ZT
		AFT
		KFT
		RT
Model No. of filter in photograph is GRTB1KBGZ10S.		
		RTI
		LRT
Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure: 100 psi (7 bar) Min. Yield Pressure: 400 psi (28 bar)	Housing Specifications	BRT
Rated Fatigue Pressure: 145 psi (10 bar), Per NFPA T2.6.1-2005		DIT
Temp. Range: -20°F to 200°F (-29°C to 93°C)		TRT
Bypass Setting: Cracking: 25 psi (1.7 bar) Full Flow: 42 psi (2.9 bar)		BFT
Cap & Bowl: Nylon Porting Head: Aluminum		ОТ
Weight of GRTB-1K: 5.2 lbs (2.36 kg)		QT
Element Change Clearance: 9.5" (240 mm)		КТК
		LTK
		MRT
Type Fluid Appropriate Schroeder Media	Fluid	
Petroleum Based Fluids All E media (cellulose), Z-Media [*] and ASP [*] media (synthetic)	Compatibility	Accessories For Tank-
Invert Emulsions $~~$ 10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)		Mounted Filters
		PAF1
		MAF1
		MF2

SCHROEDER INDUSTRIES 247 v.112923

GRTB

Tank-Mounted Return Line Filter

Metric dimensions in ().

		o Per ISO 4572/NFP ticle counter (APC) calibra	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}(c) \geq 200$	$\hat{B}_{x}(c) \geq 1000$
KBGZ1	<1.0	<1.0	<1.0	<4.0	4.2
KBGZ3	<1.0	<1.0	<2.0	<4.0	4.8
KBGZ5	2.5	3.0	4.0	4.8	6.3
KBGZ10	7.4	8.2	10.0	8.0	10.0
KBGZ25	18.0	20.0	22.5	19.0	24.0

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	
KBGZ1	112	
KBGZ3	115	
KBGZ5	119	
KBGZ10	108	
KBGZ25	93	
	Element Collapse Rating:	150 psid (10 bar) for standard elements
	Flow Direction:	Outside In
Elen	nent Nominal Dimensions:	K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

Tank-Mounted Return Line Filter

GF

 $\Delta P_{\text{housing}}$ GRTB $\Delta P_{housing}$ for fluids with sp gr (specific gravity) = 0.86:

0

20

40

60

Flow Rate [GPM]

80

100

120

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{riter} at 80 gpm (303.2 L/min) for GRTB1KBGZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the GRTB housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KBGZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 8 \text{ psi} + (4 \text{ psi} * 1.1) = 12.4 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = .55 \text{ bar} + (.27 \text{ bar} * 1.1) = .85 \text{ bar}$

Tank-Mounted Return Line Filter

How to Build a Valid Model Number for a Schroeder GRTB: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 GRTB Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 5 BOX 6 BOX 7 BOX 8 BOX 4 GRTB – 1KBG -Ζ 10 Ρ Y2 = GRTB1KBGZ10PY2

Highlighted product eligible for QuickDelivery

GRTB

Filter

Model

Number

Selection

	BOX 1	BOX 2	BOX 3	BOX 4
	Filter Series	Element Size	Media Type	Micron Rating
C	GRTB (GeoSeal°)	1KBG (GeoSeal®)	Omit = E-Media (cellulose)	1 = 1 μ Z-Media°
	RTB	1KB	Z = Excellement [®] Z-Media [®]	3 = 3 µZ-Media°
				$5 = 5 \mu Z$ -Media°
				$10 = 10 \mu$ E, and Z-Media [•]
				$25 = 25 \mu\text{E}$, and Z-Media [°]
	BOX 5	BOX 6	2017	
	Seals	Port	BOX 7	
<u>_</u>	nit = Buna N		Outlet Porting Options	
U		P = 1.25" NPT	Omit $= 1^{\frac{1}{2}}$ NPT male	
		S = SAE-20	C = Check valve D = Diffuser	
	L	B = ISO 228 G-1.25"	CD = Check valve & diffuser	
			T = 13" Tube extension	
	BO>			
	Indic	ator		
	Omit= Nor	ne		
	Y2= Bac gau	k-mounted tricolor Ige		
	ES= Elec	tric switch		
	ES1 = Hea con	vy-duty electric tch with conduit nections		
	Flor	trical Switch with Itsch Connector		
	ES2 = Dec	utsch Connector		

NOTES:

Box 3. Use boxes 2, 3, 4, and 5 to build a replacement element part number.

	MiniMiser [™] Tank-Mounted Filter	MTA	IRF TF1
	<section-header><section-header><section-header><section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	15 gpm <u>55 L/min</u> 100 psi 7 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT
Model No. of filter in photograph is MTA3TAZ	210P8.	•	RTI
Flow Rating:	Up to 15 gpm (55 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT ART
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure: Rated Fatigue Pressure:	269 psi (18 bar), per NFPA T2.6.1 Contact factory	Specifications	BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 48 psi (3.3 bar)		BFT
Porting Head & Cap: Element Case:	Die Cast Aluminum Glass Filled Nylon		QT
Weight of MTA-3:	1.0 lbs. (0.5 kg)		
Element Change Clearance:	3.0" (76 mm)		KTK
			LTK
			MRT
Type Fluid App	propriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids All E	E media (cellulose) and Z-Media [*] (synthetic)	Compatibility	For Tank- Mounted Filters
			PAF1
			MAF1
	SCHROEDER INDUSTRIES 25	1	MF2
	SCHNOLDER INDOSTRIES 25		

MTA

MiniMiser[™] Tank-Mounted Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
3TAZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TAZ5	2.5	3.0	4.0	4.8	6.3
3TAZ10	7.4	8.2	10.0	8.0	10.0
3TAZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	
3TAZ3	4	
3TAZ5	6	
3TAZ10	4	
3TAZ25	4	

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions:

2.0" (51 mm) O.D. x 3.0" (76 mm) long

MiniMiser[®] Tank-Mounted Filter

MTA

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\ell})$$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for MTA3TAZ25P8Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the MTA housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 3TAZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{r}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 4 \text{ psi } [.27 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 4 \text{ psi} + (7 \text{ psi} * 1.1) = 11.7 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .27 \text{ bar} + (.48 \text{ bar} * 1.1) = .80 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\text{f}}. \text{Plug}$ this variable into the overall pressure drop equation.

ΔP	
1.40	
0.33	
	1.40

MiniMiser[™] Tank-Mounted Filter

MTA

Filter Model Number Selection	BOX 1	UIID a Valid Mod BOX 2 OTE: One option per BOX 2 - 3 -	del Number for a Schroeder MTA: BOX 3 BOX 4 BOX 5 box BOX 3 BOX 4 BOX 5 TA25 - P8 - Y5 = MTA3TA25P8Y	· ′5
	BOX 1 Filter Series	BOX 2 Element Length (in)	BOX 3 Element Size and Media	
	MTA	3	TA10 = TA size 10 μ E media (cellulose) TA25 = TA size 25 μ E media (cellulose)	
			TAZ1 = TA size 1 μ Excellement [*] Z-Media [*] (synthetic)	
			TAZ3 = TA size 3 μ Excellement [*] Z-Media [*] (synthetic)	
			TAZ5 = TA size 5 μ Excellement [*] Z-Media [*] (synthetic)	
			TAZ10 = TA size 10 μ Excellement [*] Z-Media [*] (synthetic)	
			TAZ25 = TA size 25 μ Excellement [*] Z-Media [*] (synthetic)	

BOX 4		BOX 5
Porting Options		Dirt Alarm [®] Options
P8 = ½" NPTF		Omit = None
S8 = SAE-8	Visual	Y2C = Bottom-mounted gauge in cap
		Y5 = Back-mounted gauge in cap
	Electrical	ESC = Electric pressure switch (2 terminals)

254 SCHROEDER INDUSTRIES

	MiniMiser [™] Tank-Mounted Filter	MTB	IRF
			TF1
		35 gpm	KF3
	Features and Benefits	135 L/mir	า
	 Low pressure tank-mounted filter 	100 psi	KL3
	 Compact size minimizes space requirements 	7 bar	LF1
	 Minimizer is cost-effective alternative to spin-on filters 		MLF1
	Special filter element design provides		
	aftermarket benefits		RLD
			GRTB
			MTA
ALC: 10			MIA
			MTB
			ZT
			AFT
			KFT
			RT
Model No. of filter in photograph is	MTB5TBZ5P16H.		ΓI
			RTI
			LRT
Flow Rating:	Up to 25 gpm (95 L/min) for 150 SUS (32 cSt) fluids–MTB-3	Filter	
Max. Operating Pressure:	Up to 35 gpm (135 L/min) for 150 SUS (32 cSt) fluids–MTB-5 100 psi (7 bar)	Housing Specifications	ART
Min. Yield Pressure:	229 psi (15 bar), per NFPA T2.6.1	specifications	BRT
Rated Fatigue Pressure:	Contact factory		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar)		BFT
Porting Head & Cap:	Die Cast Aluminum		
Element Case: Weight of MTB-3:	Glass Filled Nylon 1.8 lbs. (0.8 kg)		QT
Weight of MTB-5:	2.1 lbs. (1.0 kg)		КТК
Element Change Clearance:	3.0" (76 mm) MTB-3 5.0" (127 mm) MTB-5		
			LTK
			MRT
Type Fluid	Appropriate Schroeder Media	Fluid	
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility	Accessories For Tank- Mounted
			Filters
			PAF1
			MAF1
			IVIANE I
	•	•	MF2
	SCHROEDER INDUSTRIES 25	5 v.111323	

MTB

MiniMiser[™] Tank-Mounted Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NFF particle counter (APC) calib			per ISO 16889 ted per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
3TBZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TBZ5	2.5	3.0	4.0	4.8	6.3
3TBZ10	7.4	8.2	10.0	8.0	10.0
3TBZ25	18.0	20.0	22.5	19.0	24.0
5TBZ3	<1.0	<1.0	<2.0	4.7	5.8
5TBZ5	2.5	3.0	4.0	5.6	7.2
5TBZ10	7.4	8.2	10.0	8.0	9.8
5TBZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
3TBZ3	11
3TBZ5	12
3TBZ10	11
3TBZ25	11
5TBZ3	18
5TBZ5	21
5TBZ10	17
5TBZ25	18

Element Collapse Rating: Flow Direction: Element Nominal Dimensions:

150 psid (10 bar) Outside In 3TB: 3.0" (76 mm) O.D. x 3.0" (76 mm) long 5TB: 3.0" (76 mm) O.D. x 5.0" (127 mm) long

MiniMiser[®] Tank-Mounted Filter

MTB

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{mer} at 10 gpm (37.9 L/min) for MTB3TBZ25P12Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 1 psi (.07 bar) on the graph for the MTB housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the 3TBZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1 \text{ psi [.07 bar]} | \Delta P_{\text{element}} = 3 \text{ psi [.21 bar]}$

 $V_f = 160 \text{ SUS} (34 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 1 \text{ psi} + (3 \text{ psi} * 1.1) = 4.3 \text{ psi}$ \underline{OR}

 $\Delta P_{\text{filter}} = .07 \text{ bar} + (.21 \text{ bar} * 1.1) = .30 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \, \Delta P_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP
3TB10	1.40	5TB10	0.40
3TB25	0.10	5TB25	0.08

MTB MiniMiser[™] Tank-Mounted Filter

Filter Model Number Selection	How to Build BOX 1 MTB Example: NOTE: BOX 1 MTB	BOX 2	er bo	DX BOX 3 BOX 4 BO	ede DX 5 DX 5	BOX	6	25P12HY5
	BOX 1	BOX 2			BO	X 3		
	Filter Series	Element Length (in)		Element S	Siz	e and Media	a	
	МТВ	3		TB10 = T size 10 μ E mec	dia	(cellulose)		
		5		TB25 = T size 25 µ E mec	dia	(cellulose)		
				TBZ3 = T size 3 μ Excelle	eme	ent [®] Z-Media	° (synthetic)	
				TBZ5 = T size 5 μ Excelle	eme	ent [®] Z-Media	° (synthetic)	
				TBZ10 = T size 10 μ Excell	len	nent [®] Z-Med	ia [®] (synthetic)	
				TBZ25 = T size 25 μ Excell	len	nent [®] Z-Med	ia [°] (synthetic)	
	BOX 4			BOX 5			BO	X 6
	Porting Op	otions		Outlet Options			Dirt Alarm	° Options
	P12 = ³ / ₄ " NP	TF	Or	mit = 1.5" NPT Outlet			Omit = None	
	P16 = 1" NPT	ſF		H = Hose Barb Outlet		Visual	Y2C = Bottom-m	ounted gauge in cap
	S12 = SAE-12	2		D = Diffuser		visual	Y5 = Back-mou	nted gauge in cap
	S16 = SAE-10	6				Electrical	ESC = Electric pr	essure switch (2 terminals)
	B12 = ISO 22	28 G-¾"						
	B16 = ISO 22	28 G-1"						

			TF1
<image/>	<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	40 gpm <u>150 L/min</u> 100 psi 7 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT1
			LRT
Flow Rating:	Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids	Filter Housing	ART
Max. Operating Pressure: Min. Yield Pressure:	100 psi (7 bar) 300 psi (21 bar), per NFPA T2.6.1	Specifications	DDT
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-R1-2005		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (1.7 bar)		
Can 0 David	Full Flow: 39 psi (2.7 bar)		BFT
Cap & Bowl: Porting Head:	Nylon Aluminum		ОТ
Weight of ZT-8Z:	3.3 lbs. (1.49 kg)		QT
Element Change Clearance:	10.0" (254 mm)	•	KTK
		-	

MRT

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation		PAF1
			MAF1

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NF particle counter (APC) calib			o wrt ISO 16889 rated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
8Z3	6.8	7.5	10.0	N/A	N/A
8Z10	15.5	16.2	18.0	N/A	N/A
8ZZ1	<1.0	<1.0	<1.0	<4.0	4.2
8ZZ3	<1.0	<1.0	<2.0	<4.0	4.8
8ZZ5	2.5	3.0	4.0	4.8	6.3
8ZZ10	7.4	8.2	10.0	8.0	10.0
8ZZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
8Z3	39
8Z10	32
8ZZ1	51
8ZZ3	52
8ZZ5	59
8ZZ10	55
8ZZ25	77

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions: 3.2" (81 mm) O.D. x 9.25" (235 mm) long

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\ell})$$

Exercise:

Determine ΔP_{filter} at 30 gpm (119.7 L/min) for ZT8ZZ10SY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the ZT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 3.5 psi (.24 bar) according to the graph for the 8ZZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] | \Delta P_{\text{element}} = 3.5 \text{ psi} [.24 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{resur}} = 3.5 \text{ psi} + (3.5 \text{ psi} * 1.1) = 7.4 \text{ psi}$ $\frac{OR}{\Delta P_{\text{resur}}} = .24 \text{ bar} + (.24 \text{ bar} * 1.1) = .50 \text{ bar}$ Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
8Z3	0.25
8Z10	0.09
8Z25	0.02

ZT

Filter Model Number Selection	How to Build a Valid N BOX 1 BOX 2 E ZT	/2	
Highlighted product eligible for	BOX 1 BOX	BOX 3	BOX 4
QuickDelivery	Filter Elem Series Lengt	Element Size and Media	Seal Material
	ZT 8	Z3 = Z size 3 μ E media (cellulose)	Omit = Buna N
	GZT	Z10 = Z size 10 μ E media (cellulose)	
	(GeoSeal [*])	Z25 = Z size 25 μ E media (cellulose)	
		ZZ1 = Z size 1 μ Excellement [®] Z-Media [®] (synthetic)	
		ZZ3 = Z size 3 μ Excellement [®] Z-Media [®] (synthetic)	
		ZZ5 = Z size 5 μ Excellement [®] Z-Media [®] (synthetic)	
		ZZ10 = Z size 10 μ Excellement [®] Z-Media [®] (synthetic)	
		ZZ25 = Z size 25 μ Excellement [®] Z-Media [®] (synthetic)	
		GeoSeal [®] Element Options	
		GTZ3 = Z size 3 μ E media (cellulose)	
		GTZ10 = Z size 10 μ E media (cellulose)	
		GTZ25 = Z size 25 μ E media (cellulose)	
		GTZZ1 = Z size 1 μ Excellement [®] Z-Media [®] (synthetic)	
		GTZZ3 = Z size 3 μ Excellement [®] Z-Media [®] (synthetic)	
		GTZZ5 = Z size 5 μ Excellement [®] Z-Media [®] (synthetic)	
		GTZZ10 = Z size 10 μ Excellement [®] Z-Media [®] (synthetic)	
		GTZZ25 = Z size 25 μ Excellement [®] Z-Media [®] (synthetic)	

BOX 5		BOX 6	BOX 7
Inlet Porting		Dirt Alarm [®] Options	Outlet Porting
P = 1" NPTF		Omit = None	Omit = $1^{\frac{1}{2}}$ NPT male
PP = Dual 1" NPTF		Y2 = Back-mounted tri-color gauge	D = Diffuser
S = SAE-16	Visual	Y2C = Bottom-mounted gauge in cap	T = 13" Tube Extension G3039 = 1.5" NPT outlet removed
SS = Dual SAE-16		Y5 = Back-mounted gauge in cap	יאו כ.ו = פנטכט איז טעוופן פוווטעפט דיאו
B = ISO 228 G-1"		ES = Electric switch	
BB = Dual ISO 228 G-1"	Electrical	ES1 = Heavy-duty electric switch with conduit connection	
		ES2 = Electrical Switch with Deutsch Connector	
BOX 8			
Options			
Omit = None			

t = None

B = Breather

M = Mounting Gasket (Buna N)

Air Fusion Technology

AFT

		TF1
Features and Benefits	40 gpm	KF3
 Patent Pending In-tank filter design 	<u>151 L/mir</u>	۲ KL3
 Lightweight and as part of a tank optimization package can reduce reservoir size 	100 psi 7 bar	LF1
 Lock & Key Quality Protected, OEM Specific Interfaces available 		MLF1
 Superior de-aeration performance 		RLD
 360 degree swivel connection. Lines stay connected during element changeouts 		
 Anti-Drain Check valve option to keep lines from emptying during element change outs 		GRTB
20 ft-lb max loading torque on inlet port		MTA
Part of Schroeder Industries' Energy Sustainability Initiative		MTB
		ZT
		AFT
		KFT
0L16N		RT
	-	
		RTI
		LRT
gpm (151 L/min)	Filter	ART
0 psi (7 bar)	Housing	DDT
0 psi (24 bar)	Specifications	BRT
0 psi (7 bar)		TRT
0°F to 225°F (-29°C to 107°C)		
acking: 25 psi (1.7 bar)		BFT
K = 5.28" [134mm] K = 8.62" [219mm]		QT
LK = 11.96" [304mm] LK = 15.30" [389mm]		КТК
elements		LTK
		LIN
		MRT
opriate Schroeder Media	Fluid	Accessories
dia [*] and ASP [*] media (synthetic)	Compatibility	For Tank-
Media [®] and ASP [®] media (synthetic)		Mounted
d 25 μ Z-Media° and 10 μ ASP° media (synthetic)		Filters
0 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)		
-Media [®] (synthetic) with H (EPR) seal designation and all media (synthetic)		PAF1

Model No. of filter in photograph is AFT8LKZ10

Flow Rating:	40 gpm (151 L/min)	Filter	ART
Max. Operating Pressure:	100 psi (7 bar)	Housing	BRT
Min. Yield Pressure:	350 psi (24 bar)	Specifications	DITI
Rated Fatigue Pressure:	100 psi (7 bar)		TRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 25 psi (1.7 bar)		BFT
Element Change Clearance:	4LK = 5.28" [134mm] 8LK = 8.62" [219mm]		QT
	12LK = 11.96" [304mm] 16LK = 15.30" [389mm]		KTK
Element Case:	12 elements		LTK

	Appropriate Schroeder Media	Fluid Compatibility	Accessories
Petroleum Based Fluids	Z-Media" and ASP" media (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)		PAF1
			MAF1

Air Fusion Technology

Ø6.70[170]-

Ø3.71 [94]

Metric dimensions in (mm).

Element Performance Information & Dirt Holding Capacity

AFT

		tio Per ISO 4572/NF Particle counter (APC) calil		o wrt ISO 16889 ated per ISO 11171	
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
4LKZ3, 8LKZ3 12LKZ3, 16LKZ3	<1.0	<1.0	<2.0	<4.0	4.8
4LKZ5, 8LKZ5 12LKZ5, 16LKZ5	2.5	3.0	4.0	4.8	6.3
4LKZ10, 8LKZ10 12LKZ10, 16LKZ10	7.4	8.2	4.0	8.0	10.0
4LKZ25, 8LKZ25 12LKZ25, 16LKZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)						
4LKZ3	8	8LKZ3	16	12LKZ3	23	16LKZ3	30
4LKZ5	9	8LKZ5	18	12LKZ5	26	16LKZ5	33
4LKZ10	11	8LKZ10	22	12LKZ10	32	16LKZ10	41
4LKZ25	18	8LKZ25	36	12LKZ25	52	16LKZ25	69

16LKZ: 3.71" (94.23 mm) O.D. x 14.52" (368.81 mm) long

 Element Burst Pressure:
 86 psi (6 bar)

 Flow Direction:
 Inside Out

 Element Nominal Dimensions:
 4LKZ: 3.71" (94.23 mm) O.D. x 4.49" (114.05 mm) long 8LKZ: 3.71" (94.23 mm) O.D. x 7.84" (199.14 mm) long 12LKZ: 3.71" (94.23 mm) O.D. x 11.18" (283.97 mm) long

264 SCHROEDER INDUSTRIES

Air Fusion Technology AFT

$\Delta P_{\text{housing}}$			TF1
AFT ΔP_{houses} for fluids with sp gr (specific gra		Pressure	KE0
ΔP Hou Flow Rate	(LPM)	Drop	KF3
		Information Based on	KL3
4.00	0.25	Flow Rate and Viscosity	LF1
(0) (0) (2) (2) (2) (2) (2) (2) (2) (2	0.20 Fe		MLF1
2.00 1.50	0.15		RLD
1.00	0.05		GRTB
Flow Pate	25.00 30.00 35.00 40.00 45.00		MTA
	GPVI) – without Check Valwe		
4LKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)	LKZ		MTB
Flow Rate [LPM]	Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]		ZT
	0 20 40 60 80 100 120 140 160 16.00 7 23 1.00 23 1.00		<u> </u>
	12.00 25 0.80	do	AFT
	6.00 210 0.40		KFT
	2.00 0.00 0 5 10 15 20 25 30 35 40 45		RT
Flow Rate [GPM] 12LKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)	Flow Rate [GPM] 6LKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)		RTI
Flow Rate [LPM] 0 20 40 60 80 100 120 140 160	Flow Rate [LPM]		LRT
	7.00	.00 .50 .00 至 	ART
2.00 00 00 2.00 00 00 00 00 00 00 00 00 00 00 00 00	4.00 210 210 210 210 210 210 210 210 210 2	50 50 50 50	BRT
	1.00 0.00 0 5 10 15 20 25 30 35 40 45	.50 E	TRT
Flow Rate [GPM] Note: Additional Pressured Drop ini	Flow Rate [GPM] ormation available upon request		BFT
$\Delta P_{\text{riter}} = \Delta P_{\text{housing}} -$	$-(\Delta P_{element} * V_{f})$		
Exercise:	ring 160 SUS (34 cSt) fluid		QT
Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm on the graph for the AFT housing.	In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar)		KTK
Use the element pressure curve to determine $\Delta P_{\mbox{\tiny element}}$ at 10 gpm graph for the 8LKZ10 element.	In this case, $\Delta P_{\mbox{\tiny element}}$ is 1.4 psi (.10 bar) according to the		LTK
Because the viscosity in this sample is 160 SUS (34 cSt), we deter Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To			MRT
reference the chart in Appendix D. Finally, the overall filter pressure differential, ΔP_{refer} , is calculated differential, ($\Delta P_{\text{element}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be m differential across the element.	by adding $\Delta P_{\text{housing}}$ with the true element pressure ultiplied by the viscosity factor to get the true pressure	Fo	essories or Tank- ounted
Solution:			Filters
$\Delta P_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] \Delta P_{\text{element}} = 1.4 \text{ psi} [.10 \text{ bar}]$			PAF1
V _f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1			MAF1
$\Delta P_{\text{riter}} = 1.5 \text{ psi} + (1.4 \text{ psi} * 1.1) = 3.0 \text{ psi}$ <u>OR</u>			
$\Delta P_{mer}^{}$ = .10 bar + (.10 bar * 1.1) = .21 bar			MF2

Air Fusion Technology

How to Build a Valid BOX 1 BOX 2 BOX AFT							
BOX 1 BOX 2 BOX							
BOX 1	BOX 2	BOX 3	BOX 4				
Filter Series	Element	Media	Seal				
Air Fusion AFT Technology	4LK= 4" Element	Z3= 3 micron Z media	Omit= Buna				
Filter	8LK = 8" Element	Z5 = 5 micron Z media	V = Viton				
	12LK = 12" Element	Z10 = 10 micron Z media	H = EPR				
	16LK = 16" Element	Z25 = 25 micron Z media					
BOX 5	BOX 6	BOX 7					
Porting	Bypass	Check Valve					
S12= SAE 12	Omit= 25 psi	Omit= Check Valve					
S16 = SAE 16		N = No Check Valve					
L12 = 90 Deg SAE 12	2						
L16 = 90 Deg SAE 16	5						
HB16 = 1"Hose Barb							
	BOX 8						
Gauge Port C	Option (Elbow Only)						
N= Plugged							
Y2 = Tricolor visual	indicator (Back Mounted)						
Y2C = Tricolor visual	indicator (Bottom Mounte	ed)					
ES = Electric Switch	ı						
ES1 = Heavy Duty El	ectric Switch						
ES2 = Electrical Swite	ch with Deutsch Connecto	pr					

Filter How to Build a Valid Model Number for a Schroeder AFT

Model Number Selection

AFT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 8LKZ25V
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 7. Check valve prevents hydraulic oil to spill when changing out the element and it is recommended. Not including could reduce differential pressure slightly but risks a greater hydraulic oil spill on element change out.

Air Fusion Technology (Fixed Head)

AFTF

Features and Benefits • Pattert Pending In-tank filter design \$40 gpm, 151 L/min, 100 psi, 151 L/min, 100 psi, 7 bar K13 • Lock & Kry Quilly Poterted, QEM Specific Interfaces • Single filter design IIII K13 • Lock & Kry Quilly Poterted, QEM Specific Interfaces • Single filter design IIIII K13 • Lock & Kry Quilly Poterted, QEM Specific Interfaces • Single filter design IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				TF1
Flow Rating:40 gpm (151 L/min)Filter Housing SpecificationsART Housing SpecificationsMax. Operating Pressure:100 psi (7 bar)BRTMin. Yield Pressure:100 psi (7 bar)TRTRated Fatigue Pressure:100 psi (7 bar)TRTBypass Setting:Cracking: 25 psi (1.7 bar)BFTBypass Setting:Cracking: 25 psi (1.7 bar)BFTElement Change Clearance:4LK = 5.28° [134mm] BLK = 8.62° [219mm] 12LK = 11.96° [304mm] 16LK = 15.30° [389mm]BFTElement Case:12 elementsCTKType FluidAppropriate Schroeder MediaFluid CompatibilityType FluidAppropriate Schroeder MediaFluid CompatibilityMRTHigh Water ContentAll Z-Media' and ASP' media (synthetic)High Water Gowid:10 and 25 µ Z-Media' and 10 µ ASP' media (synthetic)Invert Emulsions10 and 25 µ Z-Media' and all ASP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) with H (EPR) seal designation and all ASP' media (synthetic)Phosphate EstersAll Z-Media' and AISP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) with H (EPR) seal designation and all ASP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) with H (EPR) seal designation and all ASP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) with H (EPR) seal designation and all ASP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) with H (EPR) seal designation and all ASP' media (synthetic)Phosphate EstersAll Z-Media' (synthetic) wi		 Patent Pending In-tank filter design Lightweight and as part of a tank optimization package can reduce reservoir size Lock & Key Quality Protected, OEM Specific Interfaces available Superior de-aeration performance Fixed head connection. Lines stay connected during element changeouts 	<u>151 L/mir</u> 100 psi	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT AFT KFT RT
Element Case: 12 elements Element Case: 12 elements KTK LTK MRT Type Fluid Appropriate Schroeder Media Petroleum Based Fluids Z-Media* and ASP* media (synthetic) High Water Content All Z-Media* and ASP* media (synthetic) Invert Emulsions 10 and 25 µ Z-Media* and 10 µ ASP* media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media* and all ASP* media (synthetic) Phosphate Esters All Z-Media* (synthetic) with H (EPR) seal designation and all ASP* media (synthetic)	Max. Operating Pressure: Min. Yield Pressure: Rated Fatigue Pressure: Temp. Range: Bypass Setting:	100 psi (7 bar) 350 psi (24 bar) 100 psi (7 bar) -20°F to 225°F (-29°C to 107°C) Cracking: 25 psi (1.7 bar) 4LK = 5.28" [134mm] 8LK = 8.62" [219mm] 12LK = 11.96" [304mm]	Housing	ART BRT TRT BFT QT
Petroleum Based Fluids Z-Media* and ASP* media (synthetic) High Water Content All Z-Media* and ASP* media (synthetic) Invert Emulsions 10 and 25 µ Z-Media* and 10 µ ASP* media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media* and all ASP* media (synthetic) Phosphate Esters All Z-Media* (synthetic) with H (EPR) seal designation and all ASP* media (synthetic)	Element Case:	12 elements		LTK
	Petroleum Based Fluids High Water Content Invert Emulsions Water Glycols	Z-Media [*] and ASP [*] media (synthetic) All Z-Media [*] and ASP [*] media (synthetic) 10 and 25 μ Z-Media [*] and 10 μ ASP [*] media (synthetic) 3, 5, 10 and 25 μ Z-Media [*] and all ASP [*] media (synthetic) All Z-Media [*] (synthetic) with H (EPR) seal designation and all		For Tank- Mounted Filters

AFTF

Air Fusion Technology (Fixed Head)

Metric dimensions in (mm).

		tio Per ISO 4572/NF article counter (APC) calik		o wrt ISO 16889 ated per ISO 11171	
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
4LKZ3, 8LKZ3 12LKZ3, 16LKZ3	<1.0	<1.0	<2.0	<4.0	4.8
4LKZ5, 8LKZ5 12LKZ5, 16LKZ5	2.5	3.0	4.0	4.8	6.3
4LKZ10, 8LKZ10 12LKZ10, 16LKZ10	7.4	8.2	4.0	8.0	10.0
4LKZ25, 8LKZ25 12LKZ25, 16LKZ25	18.0	20.0	22.5	19.0	24.0

Performance Information & Dirt Holding Capacity

Element

Element	DHC (gm)						
4LKZ3	8	8LKZ3	16	12LKZ3	23	16LKZ3	30
4LKZ5	9	8LKZ5	18	12LKZ5	26	16LKZ5	33
4LKZ10	11	8LKZ10	22	12LKZ10	32	16LKZ10	41
4LKZ25	18	8LKZ25	36	12LKZ25	52	16LKZ25	69

 Element Burst Pressure:
 86 psi (6 bar)

 Flow Direction:
 Inside Out

 Element Nominal Dimensions:
 4LKZ: 3.71" (94.23 mm) O.D. x 4.49" (114.05 mm) long 8LKZ: 3.71" (94.23 mm) O.D. x 7.84" (199.14 mm) long 12LKZ: 3.71" (94.23 mm) O.D. x 11.18" (283.97 mm) long 16LKZ: 3.71" (94.23 mm) O.D. x 14.52" (368.81 mm) long

Air Fusion Technology (Fixed Head)

AFTF

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{neurr} at 10 gpm (37.9 L/min) for AFT8LKZ10L16Y2 using 160 SUS (34 cSt) fluid. Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the AFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 1.4 psi (.10 bar) according to the graph for the 8LKZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_i) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{timer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{tensent}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] | \Delta P_{\text{element}} = 1.4 \text{ psi} [.10 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

 $\Delta P_{\text{fitter}} = 1.5 \text{ psi} + (1.4 \text{ psi} * 1.1) = 3.0 \text{ psi}$

 $\frac{OR}{\Delta P_{\text{filter}}} = .10 \text{ bar} + (.10 \text{ bar} * 1.1) = .21 \text{ bar}$

AFTF

Air Fusion Technology (Fixed Head)

Filter Model Number Selection	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 AFTF - BOX 9 - BOX 9 BOX			
	BOX 1	BOX 2	BOX 3	BOX 4
	Filter Series	Element	Media	Seal
	Air Fusion	4LK= 4" Element	Z3 = 3 micron Z media	Omit= Buna
	AFTF Technology Fixed Head	8LK = 8" Element	Z5 = 5 micron Z media	V = Viton
	Filter	12LK = 12" Element	Z10 = 10 micron Z media	V – Vitori
		16LK = 16" Element	$Z_{25} = 25$ micron Z media	
			$ZZS = ZS \operatorname{Inicion} Z \operatorname{Inicion}$	
	BOX 5	BOX 6	BOX 7	
	Porting	Bypass	Gauge Port Option	
	S16 = SAE 16	Omit = 25 psi	N= Plugged	
			Y2 = Tricolor visual indicator (Bac	k Mounted)
			ES = Electric Switch	
			ES1 = Heavy Duty Electric Switch	
			ES2 = Electrical Switch with Deuts	ch Connector
	BOX 8	_		
	Breather			
	B = Breather			
		_		
t alamant part				
t element part a combination and 4. KZ25V				
gistered f DuPont Dow All elements for				

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 8LKZ25V
- Box 4. Viton^{*} is a registered trademark of DuPont Dow Elastomers. All elements for this filter are supplied with Viton^{*} seals.

Model No. of filter in photograph is GPT15DCLKZ25DF32S24

Features and Benefits

- Filter bypass in cap vs base, cleaner cold start
- Patent Pending In-Tank Design
- Lock & Key Quality Protected

Filter Housing Specifications

• •	
Flow Rating:	Up to 175 GPM (662 L/min) FOR 150 SUS (32 cSt) Fluids
Max. Operating Pressure:	150 PSI (10.3 bar)
Min. Yield Pressure:	Consult Factory
Rated Fatigue Pressure:	89 psi (6 bar)
Temp. Range:	-20 F to 225 F (-29 C to 107 C)
Bypass Setting:	Cracking: 35 PSI (2.4 bar)
Ported Head and Cap:	Die Cast Aluminum
Weight:	7 LBS. (3.18 kg)
Element Change Clearance:	20.0" (508 mm)

Fluid Compatibility

1 /	
Type Fluid:	Appropriate Schroeder Media
High Water Content:	All Z-Media (synthetic)
Invert Emulsions:	10 and 25 micron Z-Media (synthetic)
Water Glycols:	3, 5, 10, and 25 micron Z-Media (synthetic)
Phosphate Esters:	All Z-Media (synthetic) with H (EPR) seal designation

Element Performance Information

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171
Element	ß, ≥ 75	ß,(c) ≥ 1000
15TLKZ3	<4.0	4.8
15TLKZ5	4.8	6.3
15TLKZ10	8.0	10.0
15TLKZ25	19.0	24.0

GPT

Pressure Drop Information Based on Flow Rate & Viscosity				
Element	ΔΡ	Housing	ΔΡ	
15TLKZ3	0.09	0 GPM	0	
15TLKZ5	0.08	50 GPM	0.5	
15TLKZ10	0.06	100 GPM	1	
15TLKZ25	0.05	150 GPM	1.5	
		200 GPM	2.0	

Element Dirt Holding Capacity

	• • •
Element	DHC (gm)
15TLKZ3	234
15TLKZ5	259
15TLKZ10	231
15TLKZ25	312

How to Build a Valid Model Number for a Schroeder GPT:

Element	Element	Media		Micron Rating	Seals
Note: Element code can also be used to build a replacement element.	15DCLK = 15" Element	Z = Excellement Z-Media (Note: Other media is a upon request.	•	3 = 3 Micron 5 = 5 Micron 10 = 10 Micron 25 = 25 Micron	Omit = Buna V = Viton H = EPR
Porting	Porting	Block Port Options	Bypass		
	DF32S24	Omit =NoneN1 =Block Port 1N2 =Block Port 2	Omit = 35	5 PSI Cracking	
Indicator			Indicator L	ocation	
	Omit = None Y2 = Tricolor Visual Ind Y2C= Tricolor Visual Ind ES5 = Electric Switch wit			Indicator uge Port 1 uge Port 2	

The 15DCLK element assembly is made up of the GPT diverter cap and the 15TLK element. A list of model code pairings is shown below:

15DCLKZ10,ELEMENT = DIVERTER, ASSY, GPT, BUNA + 15TLKZ10, ELEMENT15DCLKZ25,ELEMENT = DIVERTER, ASSY, GPT, BUNA + 15TLKZ25, ELEMENT15DCLKZ3,ELEMENT = DIVERTER, ASSY, GPT, BUNA + 15TLKZ3, ELEMENT15DCLKZ5,ELEMENT = DIVERTER, ASSY, GPT, BUNA + 15TLKZ5, ELEMENT

KF	Т

Model No. of filter in photograph is KFT1	 Features and Benefits Low pressure tank-mounted filter Meets HF4 automotive standard Multiple inlet/outlet porting options Top, side or bottom mounting Optional check valve prevents reservoir siphoning Can also be used in return line application (contact factory) Double stacking of K-size element can be replaced by single KK element Allows consolidation of inventoried replacement elements by using K-size elements Also available with DirtCatcher* elements (KD and KKD) 	100 gpm <u>380 L/min</u> 100 psi 7 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT1 RT1
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	100 psi (7 bar)	Housing	ART
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	DDT
Rated Fatigue Pressure:	Contact Factory		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)		
Porting Head: Porting Cap:	Steel Die Cast Aluminum (standard); Steel (optional)		BFT
Element Case:	Steel		QT

10.0 lbs. (4.5 kg) 13.6 lbs. (6.2 kg)	KTK
8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K	KIK

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media and ASP [*] media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ (synthetic), 10 μ ASP $^{\circ}$ media (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic), 3, 5 and 10 μ ASP $^{\circ}$ media (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation, ASP [®] media (synthetic) and 3 and 10 μ E media (cellulose) with H (EPR) seal designation		PAF1
Skydrol	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation, ASP [®] media (synthetic) (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
			MF2

Weight of KFT-1K:

Weight of KFT-2K:

Element Change Clearance:

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/NF article counter (APC) calil		per ISO 16889 ted per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x(c) \ge 200$	$\hat{B}_{x}(c) \geq 1000$	
KZ1/KKZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/KAS3/KKAS3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/KAS5/KKAS5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/KAS10/KKAS10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25	18.0	20.0	19.0	24.0	

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	KDZ1	89	KKDZ1	188
KZ3/KAS3	115	KKZ3/KKAS3	230	KDZ3	71	KKDZ3	150
KZ5/KAS5	119	KKZ5/KKAS5	238	KDZ5	100	KKDZ5	210
KZ10/KAS10	108	KKZ10/KKAS10	216	KDZ10	80	KKDZ10	168
KZ25	93	KKZ25	186	KDZ25	81	KKDZ25	171

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

KFT

 $\Delta P_{\rm housing}$ KFT $\Delta P_{\rm house}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\text{f}}.\text{Plug}$ this variable into the overall pressure drop equation.

	-				
Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02

Exercise:

Determine ΔP_{riter} at 80 gpm (303.2 L/min) for KFT1KZ10S24S24NY2G820 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the KFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (24 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{resur}} = 3.5 \text{ psi} + (4 \text{ psi} * 1.1) = 7.9 \text{ psi}$ $\frac{OR}{\Delta P_{\text{resur}}} = .24 \text{ bar} + (.27 \text{ bar} * 1.1) = .54 \text{ bar}$

Filter Model Number Selection	BOX 1 BOX 2 E KFT	KFT - > >					
	BOX 1 BOX Filter Elemer				DX 3		BOX 4
	Filter Series KFT 1 K,KK 2 K		Dize Media Type Omit = E media (cellulose) Z = Excellement [®] Z-Media [®] (synthetic) AS = Anti-Static Pleat Media (synthetic) ZW = Aqua-Excellement [™] ZW media DZ = DirtCatcher [®] with Excellement [®] Z-Media [®]			$ \begin{array}{rcrr} 1 & =1 \\ 3 & =3 \\ 5 & =5 \\ 10 & =10 \end{array} $	ement Part Number μ Z, ZW, and DZ media μ AS,E, Z, ZW, and DZ media μ AS, Z, ZW, and DZ media 0 μ AS, E, M, Z, ZW, and DZ media δ μ E, M, Z, ZW, and DZ media
	BOX 5		E	BOX 6 Specification of	of all 4 ports is require	ed	
	Seal Material	Inlet Porting					Inlet Porting Location
	Omit = Buna N	Omit = Buna N Port 1 (Stand		Port 2 (Optional)	Port 3 (Optional)	Port 4 (Optional)	Location
	H =EPR	N =	None	N = None	N = None	N = None	Port #1
	H.5 =Skydrol [®] Compatibility					P2 = $1/{_8}^{"}$ NPTF	Port #4 or #3
					P8 = 1/2" NPTF	P8 = ½" NPTF	
		P12 =	3/4" NPTF	P12 = ¾" NPTF	P12 = 3/4" NPTF	P12 = 3/4" NPTF	Port #2
		P16 =	1" NPTF	P16 = 1"NPTF	P16 = 1" NPTF	P16 = 1"NPTF	
		P20 =	1¼" NPTF	P20 = 1¼"NPTF	P20 = 1¼"NPTF	P20 = 1¼" NPTF	
		P24 =	11⁄2" NPTF	P24 = 1½"NPTF	P24 = 1½"NPTF	P24 = 1½" NPTF	
		P32 =	2" NPTF	P32 = 2"NPTF	P32 = 2" NPTF	P32 = 2"NPTF	
		S8 =	SAE-8	S8 = SAE-8	S8 = SAE-8	S8 = SAE-8	
		S12 =	SAE-12	S12 = SAE-12	S12 = SAE-12	S12 = SAE-12	
		S16 =	SAE-16	S16 = SAE-16	S16 = SAE-16	S16 = SAE-16	
		S20 =	SAE-20	S20 = SAE-20	S20 = SAE-20	S20 = SAE-20	
		S24 =	SAE-24	S24 = SAE-24	S24 = SAE-24	S24 = SAE-24	
NOTES:							
Box 2. Number of elements must equal 1 when using	BOX 7			BOX 8		BOX 9	
KK elements.	Outlet Porting Opt	ions		al Mounting lange		Dirt Alarm [®] Op	tions
Box 3. Replacement element part	Omit = 1½" NPT male		Omit = N		Omit= I	None	
numbers are identical to contents of Boxes 2, 3, 4 and 5.	C = Check valve			lange with 4 oles	Y2= I	Back-mounted tri-colo	or gauge (located in Port 4)
K specifies one 9" element; KK specifies one 18"	D = Diffuser		BW = F h	lange with no oles	Visual Y2C = E	Bottom-mounted tr	i-color gauge in cap
element. Example: KKZ10	CD = Check valve & diff	user			Y5= I	Back-mounted gaug	ge in cap
Box 5. H.5 seal designation	T = 13" Tube extensi	on			ES= E	Electric switch (loca	ted in port 4)

ES1 = Heavy-duty electric switch with conduit connector (located in port 4)

ES2 = Electrical Switch with Deutsch Connector

Electrical

Box 5. H.5 seal de includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol^{*} is a registered trademark of Solutia Inc. Viton[®] is a registered trademark of DuPont Dow Elastomers.

- Box 7. See also "Accessories for Tank-Mounted Filters," page 307.
- Box 9. YC2 and Y5 are not available with the G820.

276 SCHROEDER INDUSTRIES

A = Non-threaded outlet

BOX 10

Additional Options

Omit = None G2293 = Cork gasket

G820 = Steel cap

KFT

RT

Features and Benefits	100 gpm 🛛 🛛	<f3< th=""></f3<>
Low pressure tank-mounted filter with up to 3 inlet ports	380 I /min	
Meets HF4 automotive standard	100 psi	KL3
Top, side or bottom mounting	-	LF1
 Optional check valve prevents reservoir siphoning 	7 bar	
 RTW model allows filter to be welded to tank, instead of being bolted 	ML	_F1
 Double and triple stacking of K-size element can be replaced by single KK or 27K-size element 	R	RLD
 Also available with new DirtCatcher[*] elements (KDZ and KKDZ) 	GR	RTB
Various Dirt Alarm [®] options	M	1TA
 Allows consolidation of inventoried replacement elements by using K-size elements 		
 Available with quality-protected GeoSeal* Elements (GRT) 	IV	1TB
Same day shipment model available	•	ZT
	A	١FT
	k	<pre><pre>FT</pre></pre>
	•	
(2.		RT

Model No. of filter in photograph is RT1K10S24NP16Y2

Filter Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids Housing Max. Operating Pressure: 100 psi (7 bar) Specifications Min. Yield Pressure: 400 psi (28 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 90 psi (6 bar), per NFPA T2.6.1-2005 -20°F to 225°F (-29°C to 107°C) Temp. Range: Bypass Setting: Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar) Porting Head & Cap: Die Cast Aluminum Element Case: Steel Weight of RT-1K: 11.4 lbs. (5.2 kg) Weight of RT-2K: 14.5 lbs. (6.6 kg) Element Change Clearance: 8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

MRT

Type Fluid Petroleum Based Fluids	Appropriate Schroeder Media All E media (cellulose), Z-Media° and ASP° media (synthetic)	Fluid Compatibility	Accessories For Tank-
High Water Content	All Z-Media [®] and all ASP [®] media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)		
Phosphate Esters	All Z-Media $^{\circ}$ (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP $^{\circ}$ Media (synthetic)		PAF1
Skydrol*	3, 5, 10 and 25 μ Z-Media $$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and		MAF1
	all ASP [*] media (synthetic)		MF2

	1½" Ports 4-Bolt Flange Only	2" Ports	All Other Porting
Port to Port	7.12"	7.56" (P, S, B)	6.38"
		7.38" (F)	
င္ to Casting Base	1.75"	1.81"	1.56"
င္ to Tank Top	2.06"	2.12"	1.88"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448.

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		o Per ISO 4572/NFPA ticle counter (APC) calibrat		io per ISO 16889 rated per ISO 11171	
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

	DHC												
Element	(gm)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In See RTI, page 275 for inside out flow version.

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

$\Delta P_{\rm housing}$ RT $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine ΔP_{riter} at 80 gpm (303.2 L/min) for RT1KZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{neutring}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 3 \text{ psi} + (4 \text{ psi} * 1.1) = 7.4 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

R1

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_{\text{f}} \text{Plug}$ this variable into the overall pressure drop equation.

drop ed	quatio	n.			
Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02
KZW1	0.43	2KZW1	-		
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

Filter		lid Mo BOX 3	odel Number for a Schroed	der RT: BOX 6A BOX	6B BOX 7 BO	X 8	
Model Number							
Selection		Example: NOTE: Only box 9 may contain more than one option					
Selection							
	RT – 1K –	Z -	– 10 – – S24 S24 N		Y2 -	= RT1KZ10S24S24Y2	
Highlighted product eligible for	BOX 1 BOX 2		BOX 3			BOX 4	
QuickDelivery	Filter Element Series & Leng	Size th	Media Type		Eleme	nt Part Number	
	RT 1K KK, 27K		Omit = E media (cellulose)		1 = 1 μZ, ZW, a	and DZ media	
	RTW 2K		Z = Excellement [*] Z-Media [*] (sy	ynthetic)	$3 = 3 \mu$ AS,E, Z,	ZW, and DZ media	
	GRT ^{3K}		AS = Anti-Static Pleat Media (sy		5 = 5 µ AS, Z, Z	W, and DZ media	
	GeoSe		ZW = Aqua-Excellement [™] ZW m			M, Z, ZW, and DZ media	
	2KBG	2/100	DZ = Dirtcatcher [®] with Excellen	nent Z-Media		Z, ZW, and DZ media	
	3KBG		W = W media (water removal) M = M media (reusable metal r	mesh)	$60 = 60 \mu\text{Mme}$	dia	
	BOX 5		Spec	BOX 6 fication of all 3 ports	s is required		
	Seal Material			Inlet Porting	g		
	Omit = Buna N		Port A	Р	Port B	Port C	
	H = EPR W = Anodized	Р	P16 = 1" NPTF	N = None		N = None	
	Aluminum Pai		$P20 = 1\frac{1}{4}$ " NPTF	P16 = 1" NPTF		P2 = 1/8" NPTF	
	H.5 = Skydrol [®] compatibili		24 = 1½" NPTF	P20 = 1 ¹ / ₄ " NPTF		P16 = 1" NPTF	
	compatibili		'32 = 2" NPTF	P24 = 1½" NPTF		S16 = SAE-16	
		s	516 = SAE-16	P32 = 2" NPTF			
		S	520 = SAE-20	S16 = SAE-16			
		S	24 = SAE-24	S20 = SAE-20		Inlet Porting Location	
		s	32 = SAE-32	S24 = SAE-24			
		E	20 = 1 ¹ /4" SAE 4-bolt flange Code 61	S32 = SAE-32		D 1/8' NPTF Standard	
NOTES:		E	24 = 1 ¹ / ₂ " SAE 4-bolt flange Code 61	F20 = 1¼" SAE 4-b	oolt flange Code 61		
Box 1. RTW allows filter to be		E	32 = 2" SAE 4-bolt flange Code 61	F24 = 1½" SAE 4-b	oolt flange Code 61		
welded to tank instead of bolted.		В	24 = ISO 228 G-1½"	F32 = 2" SAE 4-bo	olt flange Code 61		
			ange port option only:	B24 = ISO 228 G-1	1/3"	c	
Box 2. Number of elements must equal 1 when using KK or			M = Metric SAE 4 bolt flange				
27K elements.	BOX 7A	_	BOX 7B				
Box 3. Replacement element part numbers are identical to	Bypass Option		Outlet Porting Options				
contents of Boxes 2, 3, 4, and 5.	Omit = 25 psi bypass set		Omit = 1½" NPT male				
Double and triple stacking	RT and RTW models only 40 = 40 psi bypass set		C = Check valve				
of K-size elements can be replaced by single KK and	40 = 40 psi bypass set 50 = 50 psi bypass set	5	D = Diffuser				
27K elements, respectively. ZW media not available in	50 – 50 pši bypass set	ung	CD = Check Valve & Diffuser				
27K length.			T = 13"Tube ext.				
Box 5. For options H, W, and		L	A = Non-thread outlet				
H.5 all aluminum parts			BOX 8				
are anodized. H.5 seal designation includes						BOX 9	
the following: EPR seals, stainless steel wire mesh			Dirt Alarm [®] Options				
on elements, and light oil	C	mit= No	one			Add. Options	
coating on housing exterior. Skydrol° is a registered	Visual	Y2= Ba	ack-mounted tri-color gauge			Omit =None	
trademark	Located		ectric Switch			G2293 = Cork gasket	
of Solutia Inc.		$FS1 = Fl_4$	ectric Switch with 24" wire leads			G547 = Two 1/8" gauge port	

ES1 = Electric Switch with 24" wire leads

ES3 = Electric switch with DIN connector

ES4 = Skydrol Compatible Electric Switch

Y2C = Bottom-mounted tri-color gauge

Y5 = Back-mounted gauge in cap

ES2 = Electrical Switch with Deutsch Connector

Y2R = Back-mounted gauge mounted on opposite side of standard location

ES1R = Heavy-duty electric switch mounted on opposite side of standard location

ESR = Electric switch mounted on opposite side of standard location

G820 = Stamped cap

Box 6. If using Port B, Port A & B must always be the same type and size. Example: (A) P20 (B) P20 (C) P16

RT

Box 7B. See also "Accessories for Tank-Mounted Filters," page 307.

of Solutia Inc.

Electrical

Visual

Visual

Electrical

@ Port D

Located

in cap

Located

@ Port C

Tank-Mounted Filter (Inside Out Flow) RTI Fe

 Features and Benefits Tank-mounted "Inside Out" flow filter Up to 3 inlet ports available Offered in pipe, SAE straight thread and flanged porting Various Dirt Alarm[*] options 	120 gpm K <u>455 L/min</u> K 100 psi 7 bar L ML RI
	GR
	M
	M
	A
	К
5Y2.	

Model No. of filter in photograph is RTI3KZ10S24NP16Y2.

Elow Pating	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
-		Housing	
Max. Operating Pressure:		Specifications	ART
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	specifications	
Rated Fatigue Pressure:	Contact factory		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 62 psi (4.3 bar)		TRT
Porting Head & Cap: Element Case:			BFT
Weight of RTI-KI: Weight of RTI-KKI:			QT
Element Change Clearance:	KI Element = 9.0 (229 mm) KKI Element = 18.0 (457 mm) 27KI Element = 27.0 (686 mm)		KTK

RTI

Type Fluid Petroleum Based Fluids	Appropriate Schroeder Media All E media (cellulose), Z-Media [*] and ASP [*] media (synthetic)	Fluid Compatibility	Accessories For Tank-
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ and all ASP $^{\circ}$ media (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)		PAF1
Skydrol*	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil		MAF1
	coating on housing exterior) and all ASP* media (synthetic)		MF2

RTI

Tank-Mounted Filter (Inside Out Flow)

	1¼", 1½" Standard Ports	1½" Ports 4-Bolt Flange Only
Port to Port	6.38"	7.12"
င္ to Casting Base	1.56"	1.75"
င္ to Tank Top	1.88"	2.06"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448. Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				io per ISO 16889 rated per ISO 11171
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KIZ1	<1.0	<1.0	<1.0	<4.0	4.2
KIZ3	<1.0	<1.0	<2.0	<4.0	4.8
KIZ10	<7.4	<8.2	<10.0	8.0	10.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KIZ1	85	KKIZ1	181	27KIZ1	276
KIZ3	88	KKIZ3	185	27KIZ3	283
KIZ10	<82	KKIZ10	174	27KIZ10	266

Element Collapse Rating: 100 psid (7 bar) Flow Direction: Inside Out Element Nominal Dimensions: KI: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KKI: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27KI: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Tank-Mounted Filter (Inside Out Flow)

RT

$\Delta P_{\rm housing}$

RTI $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{riter} at 80 gpm (303.2 L/min) for RTIKIZ10S20S20NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nouting}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RTI housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 6.5 psi (.45 bar) according to the graph for the KIZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 6.5 \text{ psi } [.45 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 3 \text{ psi} + (6.5 \text{ psi} * 1.1) = 10.2 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = .21 \text{ bar} + (.45 \text{ bar} * 1.1) = .71 \text{ bar}$ Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = Flow Rate x \Delta P_{f_c} Plug$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
KIAS10	0.08
KKIAS10	0.05
27KIAS10/ 27KIAS10	0.04

Tank-Mounted Filter (Inside Out Flow)

Filter Model Number Selection	BOX 1 RTI	UIID a Valid M BOX 2 DTE: Only box 6 m BOX 2 - KIZ10	BOX 3	er for a Schro BOX 4 e than one option BOX 4 S20 S20 N	eder RTI: BOX 5 BOX 6 BOX 5 BOX 6 BOX 5 BOX 6 Y2 -		KIZ10S20S20NY2
	KII			520 520 N	- 12 -	= K I I	NIZ 103203201012
	BOX 1				BOX 2		
	Filter Series			Ele	ment Part Number		
	RTI	K Length KIZ1	KK Length KKIZ1	27K Length 27KIZ1	= 1 µ Excellement [*] Z-M	edia [®] and	ASP° media (synthetic)
		KIZ3	KKIZ3	27KIZ3	= 3 μ Excellement [®] Z-M	/ledia [®] and	d ASP [®] media (synthetic)
		KIZ10	KKIZ10	27KIZ10	= 10 µ Excellement [®] Z-	Media [®] ar	nd ASP [®] media (synthetic)
		BOX 3		1	1		
		Seal Material		Inlet Porting L	ocation		
	Omit = B	Buna N		D 1/8" N	IPTF Standard		
	H = E	PR					
	W = A	nodized Alumin	num Parts	A C Top View	₽▫		
	H.5 = S	kydrol [®] Compati	ibility				
	L	, ,			Ill 3 ports is required		
				Inlet Po			
		Port A			Port B		Port C
	P16 = 1"			N = No			N = None
	$P20 = 1^{1/2}$			P16 = 1"			P2 = ¹ / ₈ " NPTF
	P24 = 1			P20 = 11/4			P16 = 1" NPTF
	S16 = SA			P24 = 1½			S16 = SAE-16
	S20 = SA			S16 = SA			
	S24 = SA			S20 = SA	E-20		
	F20 = 1½	4" SAE 4-bolt flar	nge Code 61	S24 = SA	E-24		
		2" SAE 4-bolt flar		F20 = 1 ¹ / ₄	" SAE 4-bolt flange Code	e 61	
lacement element part			-	F24 = 1½	" SAE 4-bolt flange Code	e 61	
nbers are identical to tents			BOX	5			BOX 6
oxes 2 and 3.			Dirt Alarm [®]	Options			Additional Options
options H, W, and H.5, all minum parts		Omit =	- None			Omit =	= None
anodized. H.5 seal ignation includes following: EPR seals, nless steel wire mesh elements, and light oil ting on housing exterior. drol [®] is a registered	Omit = None Visual Y2 = Back-mounted tri-col Located ES = Electric switch @ Electrical ES1 = Heavy-duty electric switch			h ·lectric switch			Two ¼" gauge ports Metric thread for SAE 4-bolt flange mounting holes (specify after each port designation)

ES2 = Electrical Switch with Deutsch Connector

ESR = Electric switch mounted on opposite side

Y2R = Back-mounted gauge mounted on opposite side of

ES1R = Heavy-duty electric switch with conduit connector

Y2C = Bottom-mounted tri-color gauge

Y5 = Back-mounted gauge in cap

standard location

of standard location

- NOTES:
- Box 2. Repl num cont of Bo

RTI

- Box 3. For c alum are a desig the stain on el coati Skydrol[®] is a registered trademark of Solutia Inc.
- Box 4. If using Port B, Port A & B must always be the same type and size. Example: (Á) P20 (B) P20 (C) P16
- Box 6. See also "Accessories for Tank-Mounted Filters," page 307.

284 SCHROEDER INDUSTRIES

Visual

Visual

Electrical

Located

in cap

Located

@ Port C

	 Features and Benefits Low pressure tank-mounted filter Multiple inlet/outlet porting options Top, side or bottom mounting Optional check valve prevents reservoir siphoning Can also be used in return line application (contact factory) Visual gauge or electrical switch dirt alarms Offered in pipe, SAE straight thread, flanged and ISO 228 porting Same day shipment model available Also available with DirtCatcher* elements (18LD) G Available with quality-protected GeoSeal' Elements (GLRT) 	150 gpm 570 L/min 100 psi 7 bar MLF RLI GRT MT Z	3 1 1 D B A B T
		KF	
Model No. of filter in photograph is LRT18LZ10S24	NP16Y2.	K	I

LRT

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	BRT
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 34 psi (2.3 bar)		BFT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		QT
Weight of LRT-18L:	14.6 lbs. (6.6 kg)		
Element Change Clearance:	17.0" (432 mm)		KTK

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [*] (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation		PAF1
Skydrol [®]	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
			MED

LRT

Tank-Mounted Filter

	1 ¹ / ₂ " Ports		
	4-Bolt Flange		All Other
	Only	2" Ports	Porting
Port to Port	7.12"	7.56" (P, S, B)	6.38"
		7.38" (F)	
င္ to Casting Base	1.75"	1.81"	1.56"
င္ to Tank Top	2.06"	2.12"	1.88"

Optional mounting ring available to weld to tank.

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			o per ISO 16889 rated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LZ5	2.5	3.0	4.0	4.8	6.3
18LZ10	7.4	8.2	10.0	8.0	10.0
18LZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
18LZ1	224	18LDZ1	194
18LZ3	230	18LDZ3	199
18LZ5	238	18LDZ5	194
18LZ10	216	18LDZ10	186
18LZ25	186	18LDZ25	169

Element Collapse Rating: Flow Direction: Element Nominal Dimensions: 150 psid (10 bar) Outside In 4.0" (100 mm) O.D. x 18.5" (470 mm) long

LRT

 $\Delta P_{\rm housing}$ LRT $\Delta P_{\rm house}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\epsilon})$$

Exercise:

Determine ΔP_{mer} at 120 gpm (379 L/min) for LRT18LZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the LRT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 120 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] | \Delta P_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 3 \text{ psi} + (4 \text{ psi} * 1.1) = 7.4 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$ Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{f_c} \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔΡ
18LDZ1	0.12
18LDZ3	0.06
18LDZ5	0.05
18LDZ10	0.03
18LDZ25	0.02

RT

- Box 2. Replacement element part
- Box 4. For options H, W, and
- Box 5. If using Port B, Port A
- 307

	Tank-Mounted Filter	ART	IRF TF1
KoteKoteKoteMathKoteK	 Features and Benefits Compact, lightweight, low pressure tank mounted filter ideal for mobile applications Lightweight plastic bowl ART aluminum alloy is designed to be water tolerant - anodization is not required for use with water based fluids (HWCF). Special filter element design provides aftermarket benefits. Various Dirt Alarm[®] options 	225 gpm <u>850 L/min</u> 145 psi 10 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT
Model No. of filter in photograph is AN 1652 for 45.		-	RTI

RT

Flow Rating:	Up to 225 gpm (850 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	145 psi (10 bar)	Housing	
Min. Yield Pressure:	535 psi (37 bar), per NFPA T2.6.1	Specifications	BRT
Rated Fatigue Pressure:	145 psi (10 bar), per NFPA T2.6.1		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 43 psi (3 bar) Full Flow: 69 psi (4.75 bar)		BFT
Porting Head & Cap: Element Case:	Aluminum Plastic		QT
Weight of ART:	15 lbs. (7 kg)		
Element Change Clearance:	16.39" (340 mm)		KTK
			ITK

ADT

Petr	Type Fluid roleum Based Fluids	Appropriate Schroeder Media All Z-Media [*] (synthetic)		Fluid Compatibility	Accessories For Tank-
	High Water Content	All Z-Media [*] (synthetic)			Mounted Filters
					PAF1
					MAF1
					MF2
		SCHE	ROEDER INDUSTRIES 289		

Metric dimensions in ().

		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			
	Element	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$		
	85Z1	<4.0	4.2		
ent	85Z3	<4.0	4.8		
nce	85Z5	4.8	6.3		
Dirt	85Z10	8.0	10.0		
ity	85Z25	19.0	24.0		

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	
85Z1	185	
85Z3	147	
85Z5	206	
85Z10	164	
85Z25	167	
Elemer	nt Collapse Rating:	150 psid (10 bar)
Flow Direction:		Outside In
Element Nominal Dimensions:		4.5" (114.3 mm) O.D. x 13.8" (350.52 mm) long

ART

 $\Delta P_{_{hausing}}$ ART $\Delta P_{_{hausing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{bousing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{inter} at 120 gpm (379 L/min) for ART85Z10F43Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 1 psi (.07 bar) on the graph for the ART housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 120 gpm. In this case, $\Delta P_{\text{element}}$ is 10 psi (.69 bar) according to the graph for the 85Z10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1 \text{ psi [.07 bar]} | \Delta P_{\text{element}} = 10 \text{ psi [.69 bar]}$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 1 \text{ psi} + (10 \text{ psi} * 1.1) = 12 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .07 \text{ bar} + (.69 \text{ bar} * 1.1) = .83 \text{ bar}$

How to Build a Valid Model Number for a Schroeder ART:

Filter Model Number Selection

ART

BOX 1 ART –	BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7						
Example: NOT	E: One option per box						
BOX 1 ART –							
BOX 1	BOX 2	BOX 3					
Filter Series	Element Size and Media	Seal Material					
ART	 85Z1 = 1 μ Excellement[*] Z-Media[*] (synthetic) 85Z3 = 3 μ Excellement[*] Z-Media[*] (synthetic) 	Omit = Buna N H = EPR					
	85Z5 = 5 μ Excellement [*] Z-Media [*] (synthetic)						
	$85Z10 = 10 \mu \text{Excellement}^* \text{Z-Media}^*$ (synthetic)						
	85Z25 = 25 μ Excellement [*] Z-Media [*] (synthetic)						

BOX 4	BOX 5	BOX 6
Porting	Bypass Setting	Outlet Options
$F = 2\frac{1}{2}$ " SAE-40 4-bolt flange Code 61	43 = 43 psi Bypass	Omit = 2" Threadless Outlet
FF = Dual 2 ¹ / ₂ " SAE-40 4-bolt flange Code 61		
S = SAE-32		
SS = Dual SAE-32		

BOX 7							
	Dirt Alarm [®] Options						
	Omit = None						
	Y2 = Back-mounted tri-color gauge						
Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location						
	ES = Electric switch (normally open)						
Electrical	ESR = Electric switch mounted on opposite side of standard location						
	ES1 = Heavy-duty electric switch with conduit connector						
	ES1R = Heavy-duty electric switch with conduit connector mounted on opposite side of standard location						
	ES2 = Super duty electric switch with Thermal Lockout and 2 pin Deutsche connector (DT04- 2P, SPST, normally closed)						

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.

Box 3. For option H, all aluminum parts are anodized.

	Return Line Filter	BRT	IRF TF1
	<section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header>	to 160 gpm to 600 L/min to 145 psi to 10 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT
Model No. of filter in photograph is BRT6RBZ	102.		RTI
Flow Rating: Max. Operating Pressure: Temp. Range: Bypass Setting: Filter Head & Cover: Inlet Section: Seals Installation:	Up to 160 gpm (600 L/min) for 150 SUS (32 cSt) fluids145 psi (10 bar)-22°F to 248°F (-30°C to 120°C)Cracking: 36 psi (2.5 bar)BRT 2 - 6: Aluminum Nylon (PA66)Buna NAs in-tank filter	Filter Housing Specifications	ART BRT TRT BFT QT KTK
Biodegradabl	Type FluidAppropriate Schroeder MediaHydraulic OilsSchroeder Z-Media (synthetic)Lubrication OilsSchroeder Z-Media (synthetic)Compressor OilsSchroeder Z-Media (synthetic)e Operating FluidsSchroeder Z-Media (synthetic)	A Fluid Compatibility	LTK MRT accessories For Tank- Mounted Filters PAF1 MAF1

vit2

BRT

C/F

C/F

C/F

C/F

16.2

Metric dimensions mm ().

6RBZ25

Ŷ

BRT

Dimensions

	BRT4 - BRT6

Туре	Design	Connection pos.	H1	H2	H3	H4	H5	h1	h2	h3	ØD1	Ød1	Ød2	Øk1	Weight [kg]		
RFB	Diffuser with opening	Н	466.5	307	234	-	428		430						4.5		
0400	Diffuser with opening	V	422.4	2.4 262.6 182 393	393.8	-	61.5		17.5	154	185.7	205	10.5	4.3			
NFD 0000	Diffuser with opening	н	613.7	383.2	310	-	575.2	01.5	500	580	17.5	154	154	54 165.7	205	10.5	5.5
	Diffuser with opening	V	561.6	331.1	258	541	-]	560						5.3		

-	DHC	- ·	DHC
Element	(g)	Element	(g)
2RBZ10	70.4	4RBZ10	152.5
2RBZ25	77.8	4RBZ25	173.4
3RBZ10	114.3	6RBZ10	190.4
3RBZ25	128.3	6RBZ25	231.7

Element Burst Rating: 87 psi (6 bar) for standard elements Flow Direction: Inside Out

Element Dirt Holding Capacity & Burst Rating

Metric dimensions mm ().

BRT

296 SCHROEDER INDUSTRIES

BRT

Pressure Drop Information Based on Flow Rate and Viscosity

BRT3

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

BRT4

2.00 1.00 0.00 0 20 40 60 80 100 120 Flow Rate [GPM]

BRT6

BR

Return Line Filter	TRT	IRF TF1
Features and Benefits	up to 100 gpm up to 380 L/min	KF3 KL3
 Filter head is mounted on the tank like a standard return-line filter solution 	to 145 psi to 10 bar	LF1
The protective tube can be supplied in various optional versions: 1.) as a closed tube with the outlet opening facing downwards or with a		MLF1
closed base and rows of operating holes at the height of the tank's oil level 2.) with an optional magnetic core connected to the filter element		RLD
guaranteeing effective magnetic pre-filtration Patented de-aeration windows around the		GRTB

Quality Protected Element Design

Part of the Schroeder Industries Energy Sustainability Initiative

TRT1	TRT2	TRT3	TRT4

Model No. of filter in photograph is TRT3RTZ10MS.

Flow Rating:	Up to 100 gpm (400 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:		Housing	ART
Temp. Range:	-22°F to 248°F (-30°C to 120°C)	Specifications	BRT
Bypass Setting:	Cracking: 36 psi (2.5 bar)		DIVI
Filter Head & Cover:	Aluminum		TRT
Filter Housing:	Steel		
Inlet Section:	Nylon (PA66)		BFT
Seals:	Buna N and Viton		
Installation:	As in-tank filter		QT

KIK

MDT

Type Fluid	Appropriate Schroeder Media	 Fluid	Accessories For Tank-
Hydraulic Oils	Schroeder Z-Media (synthetic)	Compatibility	Mounted Filters
Lubrication Oils	Schroeder Z-Media (synthetic)		Filters
Compressor Oils	Schroeder Z-Media (synthetic)		
Biodegradable Operating Fluids	Schroeder Z-Media (synthetic)		PAF1
			MAF1
			MF2

SCHROEDER INDUSTRIES 299 v.112923

TRT

Element Burst Rating: 87 psi (6 bar) for standard elements Flow Direction: Inside Out

Return Line Filter TRT

		H1	H2	H3	H4	h2	h4	ØD1	b	с	Weight (lbs [kg])			
TRT1	No housing tube	0.39 [10]	8.58 [218]	-	6.10 [155]	10.24	10.24	-			5.7 [2.6]			
	Standard housing with diffuser	0.20 [5]	9.72 [247]	4.02 [102]	0.39 [10]	[260]		5.04 [128]			7.04 [3.2]			
TRT2	No housing tube	0.39 [10]	11.38 [289]	-	7.99 [203]	12.99	12.99	-			6.38 [2.9]			
INIZ	Standard housing with diffuser	0.20 [5]	12.52 [318]	4.02 [102]	0.39 [10]	[330]		5.04 [128]	3.39	3.14	8.14 [3.7			
TRT3	No housing tube	0.39 [10]	15.16 [385]	-	10.51 [267]	16.96		-	[86.0]* 3.33	[80]* 3.07	6.82 [3.1]			
IKIS	Standard housing with diffuser	0.20 [5]	16.30 [414]	4.02 [102]	0.39 [10]	[430]		5.04 [128]	[78]**	[78]**	8.14 [3.7]			
	No housing tube	0.39 [10]	19.65 [499]	-	13.23 [336]	21.26	[39]	-			-			7.48 [3.4]
TRT4	Standard housing with diffuser	0.20 [5]	20.75 [528]	4.02 [102]	0.39 [10]	[540]	5.01 [128]			9.46 [4.3]				

*unworked port **worked port

Dimensions TRT1, 2, 3, 4

Specifications For The Tank Flange

- 1. In the filter mounting interface, the tank flange should have a maximum flatness of 0.3 mm and maximum roughness of Ra 3.2 µm.
- 2. In addition, the mounting interface should be free from damage and scratches.
- The mounting holes of the flange must be blind, or stud bolts. Loctite must be used to mount the filter. As an alternative, the tank flange can be continuously welded from the inside.
- Both the tank sheet metal and the filter mounting flange must be sufficiently robust so that neither deform when the seal is compressed during tightening.

TRT

TRT2

 Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 Flow Rate [LPM]

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

 8.00
 7.00
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

TRT3

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

TRT4

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Pressure Drop Information Based on Flow Rate and Viscosity

TRT Return Line Filter

Filter Model Number Selection	How to Build a Valie BOX 1 BOX 2 TRT - Example: NOTE: One opti BOX 1 BOX 2 TRT - 1RTZ	BOX 3 	BOX 4 BOX 5 BC	DX 6 BOX 7 	BOX 8 BOX 9 BOX 8 BOX 9	=TRT1RTZ10G
	Filter SeriesSi of EleTRT1R2R3R	X 2 ze ment TZ TZ TZ TZ	BOX 3 Micron Rating $5 = 5 \mu m$ $10 = 10 \mu m$ $25 = 25 \mu m$	Omit = star	BOX 4 Bypass Indard 36 psi bypass psi bypass	
	BOX 5		BOX 6		BO	X 7
	Magnet		Porting)	Housing	Option
	Omit = no magnetio		$G = 1 - \frac{1}{2}$ " BSPP		Omit = standard ho	ousing with diffuser
	M = magnetic co	re	$S = \frac{G \ 1^{-1/2"} \ BSPP,}{SAE \ DN \ 40 \ (1^{-1/2"})}$			
			SAE-24 (req S24 = SAE bushing	uires BSPP to		
	BOX 8		В	OX 9		
	Seal Material		Dirt Alar	m [®] Options		
	Omit = Buna N		Omit = No Ind	dicator, sealed	up w/ screw plug	
	V = Viton [*]		VA = visual	/electrical]
		Clogging Indicators	VE = electr	ical		

B	F٦	Γ
	-	

			TF1
	 Features and Benefits Low pressure tank-mounted filter Designed for high return line flows Dual inlet porting options available 	300 gpm <u>1135 L/min</u> 100 psi 7 bar	KF3 KL3 LF1
	Top, side or bottom mountingOptional check valve prevents		MLF1
	reservoir siphoning		RLD
	 Special filter element design provides aftermarket benefits 		GRTB
	 Also available with DirtCatcher[®] element (BBD) 		MTA
	Cast iron head available		
			MTB
10 10 10 1			ZT
			AFT
			KFT
			RT
Model No. of filter in photograph is BFT1BBZ	5F.	-	
			RTI
			LRT
Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	250 psi (17 bar), per NFPA T2.6.1	Specifications	BRT
Rated Fatigue Pressure:	Contact factory, per NFPA T2.6.1	_	TRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		1111
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 52 psi (3.6 bar)		BFT
Porting Head & Cap: Element Case:	Aluminum Steel		QT
Weight of BFT-1BB:	36.7 lbs. (16.6 kg)		
Element Change Clearance:	14.75" (375 mm)		KTK
			LTK
			MRT
Type Fluid Appropr	iate Schroeder Media	Fluid	

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [®] (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media $^{\circ}$ (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)		
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation		PAF1
Skydrol®	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
	Petroleum Based Fluids High Water Content Invert Emulsions Water Glycols Phosphate Esters	Petroleum Based Fluids All E media (cellulose) and Z-Media* (synthetic) High Water Content All Z-Media* (synthetic) Invert Emulsions 10 and 25 μ Z-Media* (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media* (synthetic) Phosphate Esters All Z-Media* (synthetic) with H (EPR) seal designation Skydrol* 3, 5, 10 and 25 μ Z-Media* (synthetic) with H.5 seal designation (EPR seals and	Petroleum Based Fluids All E media (cellulose) and Z-Media* (synthetic) Compatibility High Water Content All Z-Media* (synthetic) Invert Emulsions Invert Emulsions 10 and 25 μ Z-Media* (synthetic) Vater Glycols Water Glycols 3, 5, 10 and 25 μ Z-Media* (synthetic) All Z-Media* (synthetic) with H (EPR) seal designation Skydrol* 3, 5, 10 and 25 μ Z-Media* (synthetic) with H.5 seal designation (EPR seals and

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NF particle counter (APC) calib		o per ISO 16889 rated per ISO 11171	
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_{x}^{(c)} \geq 1000$
BB/BLZ1	<1.0	<1.0	<1.0	<4.0	4.2
BB/BLZ3	<1.0	<1.0	<2.0	<4.0	4.8
BB/BLZ5	2.5	3.0	4.0	4.8	6.3
BB/BLZ10	7.4	8.2	10.0	8.0	10.0
BB/BLZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
BBZ1	268	BBDZ1	205	BLZ1	536
BBZ3	275	BBDZ3	163	BLZ3	550
BBZ5	301	BBDZ5	229	BLZ5	550
BBZ10	272	BBDZ10	183	BLZ10	550
BBZ25	246	BBDZ25	186	BLZ25	550
Eleme	ent Collapse Rating:	150 psid (10 bar)			
	Flow Direction:	Outside In			
Element Nominal Dimensions: BB: 5.0" (125 mm) O.D. x 18.0" (460 mm) long					

BL: 5.0" (125 mm) O.D. x 36.0" (920 mm) long

BFT

 $\Delta P_{\rm housing}$ BFT $\Delta P_{\rm house}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{mer} at 200 gpm (758 L/min) for BFT1BBZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{nounling}}$ at 200 gpm. In this case, $\Delta P_{\text{nounling}}$ is 1.5 psi (.10 bar) on the graph for the BFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.41 bar) according to the graph for the BBZ10 element.

Flow Rate [GPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{i}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] | \Delta P_{\text{element}} = 6 \text{ psi} [.41 \text{ bar}]$

$$\begin{split} V_{f} &= 160 \text{ SUS } (34 \text{ cSt}) \ / \ 150 \text{ SUS } (32 \text{ cSt}) = 1.1 \\ \Delta P_{\text{\tiny Filter}} &= 1.5 \ \text{psi} + (6 \ \text{psi} \ ^{*} \ 1.1) = 8.1 \ \text{psi} \\ \underline{OR} \end{split}$$

 $\Delta P_{\text{filter}} = .10 \text{ bar} + (.41 \text{ bar} * 1.1) = .55 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{f_c} \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	
BB10	0.03	BL10	0.01	
BB25	0.01	BL25	0.01	
BBDZ1	0.08	BLDZ1	0.16	
BBDZ3	0.06	BLDZ3	0.12	
BBDZ5	0.05	BLDZ5	0.10	
BBDZ10	0.04	BLDZ10	0.08	
BBDZ25	0.02	BLDZ25	0.04	

Filter Model Number Selection	BOX 1 BFT –	Build a Valid 30X 2 BOX 3 NOTE: Only box 1 30X 2 BOX 3 1 - BB10	BOX 4 BOX 4 0 may conta	BOX 5 B	OX 6	option BOX 7 BOX 8 BOX 9 option BOX 7 BOX 8 BOX 9 Y2	BOX 10	= BFT1BB1	OPV2	
	BOX 1 Filter	BOX 2 Number of			-1	BOX 3			BOX 4	
	Series	Elements			Elen	nent Size and Media			Seal Material	
	BFT	1	BB Length	BL Length					Omit = Buna N H = EPR	
			BB3		= 3 μ	E media (cellulose)			= Anodized	
			BB10		= 10	μ E media (cellulose)			W Aluminum Parts	
			BB25			μ E media (cellulose)			H.5 = Skydrol [®] compatibility	
			BBZ1	BLZ1	=1μ	Excellement [®] Z-Media [®]	(syntheti	ic)	compatibility	
			BBZ3	BLZ3		Excellement [®] Z-Media [®]				
			BBZ5	BLZ5	=5μ	Excellement [®] Z-Media [®]	(syntheti	ic)		
			BBZ10	BLZ10	= 10	μ Excellement [®] Z-Media	a® (synthe	tic)		
			BBZ25	BLZ25	= 25	μ Excellement [®] Z-Media	ا Excellement [®] Z-Media [®] (synthetic)			
			BBDZ1		= BB size DirtCatcher [®] 1 μ Excellement [®] Z-Media [®] = BB size DirtCatcher [®] 3 μ Excellement [®] Z-Media [®]					
			BBDZ3							
			BBDZ5		= BB s	size DirtCatcher [®] 5 μ Exce	ellement [®] Z	Z-Media [®]		
			BBDZ10		= BB s	size DirtCatcher® 10 µ Exce	ellement [®] Z	-Media®		
			BBDZ25		= BB s	size DirtCatcher [®] 25 μ Exce	ellement [®] Z	-Media®		
			DX 5 rting			BOX 6 Bypass Setting		Ou	BOX 7 Itlet Porting	
	P = 2½		ling			Omit = 25 psi cracki			= 3" NPT male	
	PP = Du	al 2½" NPTF				40 = 40 psi cracki	-	т	= 13" Tube extension	
	S = SA	E-32				· .				
	SS = Du	al SAE-32				BOX 8				
		SAE 4-bolt fla	nge Code 6	1		Optional Check Va	alve			
		al 2½"SAE 4-bo	-			Omit = None				
			5			C = Check valve				
acement element part bers are identical to ents										
oxes 3 and 4. E media				0X 9	nc				BOX 10	
available with Buna		Omit = No	Dirt Aları	η οριο	15			Additi	onal Options	
options H, W, and			-	tri color	021102			= None = Two 1/4" gai	ide ports	
Ill aluminum parts nodized. H.5 seal	Visua	al Y2R = Bac	k-mounted: k-mounted:	l gauge m		d on opposite side	G1476	G547 = Two ½" gauge ports G1476 = Three-terminal electric switch M = Metric thread for SAE 4-bolt		

flange mounting holes (specify after each port designation) 40 = 40 psi bypass setting

NOTES:

- Box 3. Replac numbe conten of Boxe eleme only av N seals
- Box 4. For opt H.5 all are and designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 8. See also "Accessories for Tank-Mounted Filters," page 307.

308 SCHROEDER INDUSTRIES

Electrical

of standard location

standard location

ESR = Electric switch mounted on opposite side of

ES2 = Electrical Switch with Deutsch Connector

ES1 = Heavy-duty electric switch with conduit connector

ES1R = Heavy-duty electric switch with conduit connector mounted on opposite side of standard location

ES = Electric switch

BFT

			TF1
		450 gpm	KF3
	Features and Benefits	<u>1700 L/m</u>	in _{KL3}
	Low pressure tank-mounted filter	100 psi	
	Designed for high return line flows	7 bar	LF1
and see your a sector	 Tank-mounted unit saves space, reduces plumbing 		MLF1
	 Cap handles provide for easy element changeout 		RLD
	Offered with standard Q, QW, and QPML deep-pleated elements in 16" and 20" langthe with Viten* scale		GRTB
	16" and 39" lengths with Viton [*] seals as the standard seal option		MTA
			МТВ
-			ZT
			AFT
			KFT
Model No. of filter in photograph is QT3	9QZ10P48D5C.		RT
			RTI
Flow Rating:	Up to 450 gpm (1700 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:		Housing	ART
Min. Yield Pressure:		Specifications	
Rated Fatigue Pressure:			BRT
Temp. Range:			
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		TRT
Porting Head: Element Case:			BFT
Min. Weight of QT-16Q: Min. Weight of QT-39Q:			QT
Element Change Clearance:	16Q 12.0" (305 mm) 39Q 33.8" (859 mm)		KTK
		-	LTK
			LIK
			MRT
Type Fluid	Appropriate Schroeder Media	Fluid	
	All E media (cellulose), Z-Media [*] and ASP [*] media (synthetic)	Compatibility	Accessories For Tank-
	All Z-Media [*] and ASP [*] media (synthetic)	. ,	Mounted
	10 and 25 µ Z-Media [®] and 10 µ ASP [®] media (synthetic)		Filters
	3, 5, 10 and 25 μ Z-Media" and all ASP" media (synthetic)		
Phosphate Esters	All Z-Media [*] (synthetic) with H (EPR) seal designation and all		PAF1
	ASP [*] media (synthetic)		

÷

*Outlet port is always 3".

Metric dimensions in ().

÷

Element Performance Information & Dirt Holding Capacity

			o Per ISO 4572/N ticle counter (APC) ca	NFPA T3.10.8.8 Ilibrated per ISO 4402		o per ISO 16889 ated per ISO 11171
Eleme	nt	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
Elemer	nt	DHC (gm)	Element		DHC (gm)	
	Z1	276	PMLZ1		307	
	Z3	283	PMLZ3		315	
16Q	Z5	351	PMLZ5		364	
	Z10	280	PMLZ10		330	
	Z25	254	PMLZ25		299	
	Z1	974	PMLZ1		1485	
	Z3	1001	PMLZ3		1525	
39Q	Z5	954	PMLZ5		1235	
	Z10	940	PMLZ10		1432	
	Z25	853	PMLZ25		1299	
		Element Collapse Rati	ng: Q and QPM	/L: 150 psid (10 bar)		
		Flow Directi	on: Outside In			
	Eleme	ent Nominal Dimensic	ons: 16Q: 16QPML: 39Q: 39QPML:	6.0" (150 mm) O.D. 6.0" (150 mm) O.D.	x 16.85" (430 mm) l x 16.00" (405 mm) l x 38.70" (985 mm) l x 37.80" (960 mm) l	ong ong
10 SCH	ROEDER INDUS	TRIES				

QT

$\Delta P_{\rm housing}$ QT $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta P_{\text{filter}} = \Delta P_{\text{bausing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{mer} at 200 gpm (758 L/min) for QT16QZ3P48D5C using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{p}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{tensent}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] | \Delta P_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 2 \text{ psi} + (8 \text{ psi} * 1.1) = 10.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .14 \text{ bar} + (.55 \text{ bar} * 1.1) = .75 \text{ bar}$ Note:

drop equation.

If your element is not graphed, use the following equation: $\Delta P_{\text{summat}} = \text{Flow Rate x } \Delta P_{f_{c}} \text{Plug}$ this variable into the overall pressure

Ele.	ΔP	Ele.	ΔP					
16QAS3V	0.04	16QPMLZ1	0.08					
16QAS5V	0.04	16QPMLZ3	0.05					
16QAS10V	0.03	16QPMLZ5	0.05					
16QPMLAS3V	0.05	16QPMLZ10	0.04					
16QPMLAS5V	0.05	16QPMLZ25	0.02					
16QPMLAS10V	0.04	39QAS3V	0.01					
16QZ1	0.09	39QAS5V	0.01					
16QZ3	0.04	39QAS10V	0.01					
16QZ5	0.04	39QPMLAS3V	0.02					
16QZ10	0.03	39QPMLAS5V	0.02					
16QZ25	0.01	39QPMLAS10V	0.01					

Pressure Drop Information Based on Flow Rate and Viscosity

QT

Filter Model Number Selection	BOX 1 BOX 2 E QT	BOX 3 BOX 4			10			
	BOX 1 BOX 2 BOX 3 QT - 16 - Q		3 – P48 – P48 –		GQZ3P48D5C			
	BOX 1 BOX 2	BOX 3	BOX 4	BOX 5	BOX 6			
	Filter Element Series Length (in)	Element Style	Media Type	Micron Rating	Housing Seal Material			
	QT 16 39	Q QCLQF QPML	Z = Excellement [*] Z-Media [*] (synthetic) W = W media (water removal) AS = Anti-Static Pleat Media (synthetic)	$\begin{array}{l} 1 &= 1\mu Z\text{-Media}\\ 3 &= 3\mu AS \text{ and }Z\text{-Media}\\ 5 &= 5\mu AS \text{ and }Z\text{-Media}\\ 10 &= 10\mu AS \text{ and }Z\text{-Media}\\ 25 &= 25\mu Z\text{-Media}\\ \end{array}$	Omit = Buna N H = EPR V = Viton [®]			
	BOX 7			BOX 10				
	Inlet Porting		Dirt A	Alarm [®] Options				
	P48 = 3" NPTF		Omit = None D5C = Visual pop-up					
	P64 = 4" NPTF	Visual						
	BOX 8	Visual with Thermal Lockout	D8C = Visual w/therm	nal lockout in cap				
	Bypass Setting Omit = 30 psi cracking		MS5C = Electrical w/ 12 MS5LCC = Low current M	2 in. 18 gauge 4-conductor cable in	сар			
	X = Blocked bypass		MS10C = Electrical w/ DIN connector (male end only) in cap					
	50 = 50 psi cracking		MS10LCC = Low current MS10 in cap					
	50 – 50 psi cracking		MS11C = Electrical w/12 ft. 4-conductor wire in cap					
		Electrical	ctrical $MS1C =$ Electrical w/ 5 pin Brad Harrison connector (male end only) in cap					
			MS12LCC = Low current MS12 in cap					
	BOX 9		MS16C = Electrical w/ weather-packed sealed connector in cap					
	Outlet Porting		MS16LCC = Low current MS16 in cap					
			MS17LCC = Electrical w/4 pin Brad Harrison male connector in cap					
	Omit = 3" NPT Male		MS5T = MS5 (see abov	e) w/ thermal lockout in cap				
	C = Check valve		MS5LCT = Low current M	S5T in cap				
cement element part ers are a combination	D = Diffuser		MS10TC = MS10 (see abo	ve) w/ thermal lockout in cap				
es 2, 3, 4 and 5, ne letter V. Example:	CD = Check valve and diffuser	Electrical		S10T in cap				
V	·	with Thermal	WS12TC = WS12 (see abo	ve) w/ thermal lockout				
element are not		Lockout	MS12LCTC = Low current M	S12T in cap				
ole in ASP [®] media.			MS16TC = MS16 (see abo	ve) w/ thermal lockout in cap				
ia elements are also			MS16LCTC = Low current M					
ole for the er housing. Contact			MS17LCTC = Low current M					
y pre information.		Electrical		readed connector & light in cap				
otion W, Box		Visual	(male end) in c	•				
t equal Q.		Electrical		ve), direct current, w/ thermal lockou	ıt in cap			
is a registered		Visual with		·				
mark of DuPont Dow mers.		Thermal Lockout		ve), direct current, w/ thermal lockou	it in cap			
ments for this filter are ed with Viton [®] seals. esignation in Box 6			MS14DCLCTC = Low current M	ынистіп сар				

NOTES:

- Box 2. Replace number of Boxes plus the 16QZ1V
- Box 3. QCLQF availab
- Box 4. E media availab QT filte factory for mor
- Box 4. For Opt 3 must
- Box 6. Viton[®] is tradema Elastom All elem supplied with Viton^{*} seals. Seal designation in Box 6 applies to housing only.

			_
	Tank-Mounted Filter Kit	KTK	IRF
			TF1
		100 gpm	KF3
		380 L/mir	
	Features and Benefits		KL3
CONT	 Special tank-mounted filter kit Includes: cap assembly, weld ring 	100 psi	LF1
	assembly, element and bushing	7 bar	
	Available with standard K, KK or 27K-size elements		MLF1
	 Bypass valve in cap assembly 		RLD
			GRTB
			MTA
			MTB
			ZT
			AFT
			KFT
			RT
Model No. of filter in photograp	h is KTKKKZ10.	•	
			RTI
			LRT
Flow R	ating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
	ssure: 100 psi (7 bar) exclusive of tank design	Housing	BRT
	ssure: Contact factory	Specifications	DITI
-	ssure: Contact factory		TRT
	ange: -20°F to 225°F (-29°C to 107°C)		
Bypass Se	tting: Cracking: 25 psi (1.7 bar) Full Flow: 40 psi (2.8 bar)		BFT
	g Cap: Die Cast Aluminum		ОТ
	Ring: Steel rance: 8.0" (205 mm) for K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		
		•	КТК
			LTK
			MRT
Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose), Z-Media [*] and ASP [*] media (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [®] and all ASP [®] media (synthetic)		Mounted
	10 and 25 μ Z-Media $^{\circ}$ and 10 μ ASP $^{\circ}$ media (synthetic)		Filters
	3, 5, 10 and 25 μ Z-Media [®] and all ASP [®] media (synthetic)		DAEA
Phosphate Esters	All Z-Media [*] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and ASP [*] media (synthetic)		PAF1
Skydrol®	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation		MAF1
	(EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP° media (synthetic)		
		-	MF2

SCHROEDER INDUSTRIES 313

Element Performance Information & Dirt **Holding Capacity**

KTK

		atio Per ISO 4572/NF particle counter (APC) calib		o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Flow Direction: Outside In

Element Collapse Rating: 150 psid (10 bar) for standard elements Element Nominal Dimensions: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KTK

*KTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system. Pressure Drop Information Based on Flow Rate and Viscosity

 $\Delta P_{\rm filter} = \Delta P_{\rm housing} + (\Delta P_{\rm element} * V_{\rm f})$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for KTKKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{max} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, ($\Delta P_{denset} * V_f$). The ΔP_{denset} from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{element}} = 8 \text{ psi} [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{siter}} = (8 \text{ psi} * 1.1) = 8.8 \text{ psi}$ $\frac{OR}{\Delta P_{\text{siter}}} = (.55 \text{ bar} * 1.1) = .61 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_{\text{F}} \text{Plug}$

this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZW1	0.43	2KZW1	-	3K10	0.03
KZW3	0.32	2KZW3/ KKZW3	0.16	3K25	0.01
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS3/ 27KAS3	0.03
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS5/ 27KAS5	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS10/ 27KAS10	0.02

Filter Model Number	BOX 1 KTK -	BOX 2 BOX 3	umber for a Schroeder KTK: BOX 4 BOX 5 			
Selection	Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 KTK - K - Z3 - = KTKKZ3					
	BOX 1	BOX 2	BOX 3			
	Filter Series	Element Length	Element Part Number			
		K	3 = 3 μ E media (cellulose)			
	КТК	KK	10 = 10 μ E media (cellulose)			
		27K	25 = 25 μ E media (cellulose)			
			Z1 = 1 μ Excellement [*] Z-Media [*] (synthetic)			
			Z3/AS3 = 3 μ Excellement [*] Z-Media [*] (synthetic)			
			Z5/AS5 = 5 μ Excellement [*] Z-Media [*] (synthetic)			
			Z10/AS10 = 10 μ Excellement [*] Z-Media [*] (synthetic)			
			Z25 = 25 μ Excellement [*] Z-Media [*] (synthetic)			
			ZW1 = 1 µ Aqua-Excellement [™] ZW media			
			ZW3 = 3 µ Aqua-Excellement [™] ZW media			
			ZW5 = 5 µ Aqua-Excellement [™] ZW media			
			ZW10 = 10 µ Aqua-Excellement [™] ZW media			
			ZW25 = 25 µ Aqua-Excellement [™] ZW media			
			ZW1 = 1 µ Aqua-Excellement [™] ZW media			
			ZW3 = 3 µ Aqua-Excellement [™] ZW media			
			ZW5 = 5 µ Aqua-Excellement [™] ZW media			
			ZW10 = 10 µ Aqua-Excellement [™] ZW media			
			ZW25 = 25 μ Aqua-Excellement ^{**} ZW media			
	E	30X 4	BOX 5			

BOX 4	BOX 5
Seal Material	Dirt Alarm [®] Options
Omit = Buna N	Omit = None
H = EPR	Visual Y2C = Bottom-mounted gauge in cap
W = Buna N	
H.5 = Skydrol [®] Compatibility	

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, and 4.
- Box 4. For options H and W, cap is anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.

Tank-Mounted Filter Kit	LTK	IRF TF1
	150 gpm 570 L/min	KF3
Features and Benefits ■ Special tank-mounted filter kit	100 psi	KL3
 Includes: cap assembly, weld ring assembly, element and bushing 	7 bar	LF1
 Available with standard 18L sized element 		MLF1
Bypass valve in cap assembly		RLD
		GRTB

Model No. of filter in photograph is LTK18LZ3.

RTI

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	100 psi (7 bar) exclusive of tank design	Housing	DDT
Min. Yield Pressure:	Contact factory	Specifications	BRT
Rated Fatigue Pressure:	Contact factory		TRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		1111
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 47 psi (3.2 bar)		BFT
Porting Cap: Weld Ring:	Die Cast Aluminum Steel		QT
Element Change Clearance:	17.0" (435 mm)		KTK

LTK

MRT

,,	Appropriate Schroeder Media All E media (cellulose) and Z-Media [*] (synthetic)	Fluid Compatibility	Accessories
	All Z-Media" (synthetic)	··· [··· 7	For Tank- Mounted
Invert Emulsions	10 and 25 μ Z-Media [*] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)		
Phosphate Esters	All Z-Media* (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation		PAF1
Skydrol®	3, 5, 10 and 25 μ Z-Media [*] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)		MAF1
			MED

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LZ5	2.5	3.0	4.0	4.8	6.3
18LZ10	7.4	8.2	10.0	8.0	10.0
18LZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)		
18LZ1	224		
18LZ3	230		
18LZ5	238		
18LZ10	216		
18LZ25	186		

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

LTK

LTK

*LTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system. Pressure Drop Information Based on Flow Rate and Viscosity

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\epsilon})$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for LTK18LKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the 18LZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{r}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{densert}} * V_{f}$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{element} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{\tiny Filter}} = (4 \text{ psi} * 1.1) = 4.4 \text{ psi}$ \underline{OR}

 $\Delta P_{\text{filter}} = (.27 \text{ bar } * 1.1) = .30 \text{ bar}$

Filter	How to Build a Valid Model Number for a Schroeder LTK:
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5
Number	
Selection	Example: NOTE: One option per box
Sciection	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5
Sciection	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Element (in)	Element Size and Media	Seal Material
		L3 = L size 3 μ E media (cellulose)	Omit = Buna N
LTK	18	L10 = L size 10 μ E media (cellulose)	H = EPR
		L25 = L size 25 μ E media (cellulose)	W = Buna N
		LZ1 = L size 1 μ Excellement [*] Z-Media [*] (synthetic)	H.5 = Skydrol [®] Compatibility
		LZ3 = L size 3 μ Excellement [®] Z-Media [®] (synthetic)	

LZ3 = L size 3 μ Excellement [*] Z-Media [*] (synthetic)	
LZ5 = L size 5 μ Excellement [*] Z-Media [*] (synthetic)	
LZ10 = L size 10 μ Excellement [*] Z-Media [*] (synthetic)	
LZ25 = L size 25 μ Excellement [*] Z-Media [*] (synthetic)	

BOX 5

Dirt Alarm [®] Options				
	Omit = None			
Visual	Y2C = Bottom-mounted gauge in cap			

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 18LZ3H

LTK

Box 4. For options H and W, cap is anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[°] is a registered trademark of Solutia Inc.

Medium Pressure In-Tank Filter	MRT	IRF TF1
 Features and Benefits Medium pressure tank mounted filter ideal for applications with high pressure surge in the return line Two possible inlet porting locations Various Dirt Alarm[*] options available Also available with DirtCatcher[*] element Optional sampling fitting available upon request 	150 gpm <u>570 L/min</u> 900 psi 62 bar	KF3 KL3 LF1 MLF1 RLD GRTB
		MTA MTB ZT

Model No. of filter in photograph is MRT18LZ10S24S24D5.

T

RTI

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter	ART
Max. Operating Pressure:	900 psi (62 bar)	Housing	
Min. Yield Pressure:	2700 psi (186 bar), per NFPA T2.6.1	Specifications	BRT
Rated Fatigue Pressure:	750 psi (52 bar), per NFPA T2.6.1-2005		тот
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TRT
Bypass Setting:	Cracking: 40 psi (2.8 bar)		BFT
Porting Head & Cap: Element Case:	Cast Aluminum (Anodized) Steel		ыт
Weight of MRT:	36.0 lbs. (16.4 kg)		QT
Element Change Clearance:	17.0" (432 mm)		
			KTK

ιти

MRT

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility	For Tank-
High Water Content	All Z-Media [*] (synthetic)		Mounted
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3, 5, 10 and 25 μ Z-Media [°] (synthetic)		
			PAF1
			MAF1
			MF2

MRT

Medium Pressure In-Tank Filter

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _∗ ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LZ5	2.5	3.0	4.0	6.5	7.5
18LZ10	7.4	8.2	10.0	10.0	12.7
18LZ25	18.0	20.0	22.5	19.0	24.0
18LDZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LDZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LDZ5	2.5	3.0	4.0	6.5	7.5
18LDZ10	7.4	8.2	10.0	10.0	12.7
18LDZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
18LZ1	224	18LDZ1	194	
18LZ3	230	18LDZ3	199	
18LZ5	238	18LDZ5	149	
18LZ10	216	18LDZ10	186	
18LZ25	186	18LDZ25	169	
Element Collapse Rating:		150 psid (10 bar)		
	Flow Direction:	Outside In		
Element Nominal Dimensions:		4.0" (100 mm) O.D. x 18.5" (470 mm) long		

Medium Pressure In-Tank Filter

Μ

 $\Delta P_{\text{housing}}$ MRT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{mer} at 80 gpm (303.2 L/min) for MRT18LZ10S24S24 using 160 SUS (34 cSt) fluid.

2.00 0.00

0

20

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the MRT housing.

40

60

80

Flow Rate [GPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

100

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] | \Delta P_{\text{element}} = 6 \text{ psi} [.17 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 1.5 \text{ psi} + (2.5 \text{ psi} * 1.1) = 4.3 \text{ psi}$ <u>OR</u>

 $\Delta P_{\text{filter}} = .10 \text{ bar} + (.17 \text{ bar} * 1.1) = .29 \text{ bar}$

0.20 Z25

0.00

160

140

120

MRT Medium Pressure In-Tank Filter

Filter Model	How to Build a Valid Mod BOX 1 BOX 2 BOX 3			er MRT: BOX 6 BOX 7				
Number	MRT							
Selection								
	BOX 1 BOX 2 BOX 3 MRT - 18 - LZ10							
	MRT – 18 – LZ10 – S24 S24 – – MRT18LZ10S24S24							
	BOX 1 BOX 2		BOX 3		BOX 4			
	Filter Element Series Length (in)	Element Size and L3 = L size 3 µ E media (cellulo		nd Media	Seal Material			
	Series Length (in)			ilose)	Omit = Buna N			
	MRT 18		μ E media (cellulose) Excellement* Z-Media* (synthetic)		onne bunart			
		Excellement [®] Z-Media [®] (synthetic)						
			Excellement [®] Z-Media [®] (synthetic) μ Excellement [®] Z-Media [®] (synthetic)					
		μ Excellement [®] Z-Media [®] (synthetic)						
			tCatcher° 1 μ Excellement° Z-Media° tCatcher° 3 μ Excellement° Z-Media°					
				Excellement [®] Z-Media [®]				
				Excellement [®] Z-Media [®]				
				Excellement [®] Z-Media [®]				
					2			
	BOX 5							
	Specification of both ports	s is required	BOX 6					
	Inlet Porting	J	Dirt Alarm [®] Options					
	Port A Port B		Omit = None					
	S = S24S = S24Inlet Porting LocationN = NoneN = None		Visual					
			Visual with D8 = Visual w/ thermal lockout		ermal lockout			
		Thermal						
		Lockout MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cab						
	^ [MS5					
				DIN connector (male end only)				
			MS10LC = Low current	•				
	Sa		MS11 = Electrical w/	12 ft. 4-conductor wire				
		Electrical		5 pin Brad Harrison connector				
			(male end o					
			MS12LC = Low current MS16 = Electrical w/	weather-packed sealed connector				
				MS16LC = Low current				
				4 pin Brad Harrison male connector				
					ove) w/ thermal lockout			
				MS5LCT = Low current	MS5T			
			FI	MS10T = MS10 (see a	bove) w/ thermal lockout			
				Electrical MS10LCT = Low current MS10T				
		Thermal	Thermal MS121 = MS12 (see above) w/ thermal loc					
		Lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout						
				MS16LCT = Low current				
			MS16LCT = Low current					
		Electrical MS13 = Supplied w/ thread						
				5 pin Brad Harrison connector				
	BOX 7	Visual	& light (male	e end)				
lacement element part	Options	Electrical	MS13DCLCT = Low current MS13DCT					
nbers are a combination	Omit = No sampling valve	Visual with						
s, and 4.	SV = Up stream sampling value	Thermal Lockout		ove), direct current, w/ thermal lockout				
ample: 18L3			LOCKOUL	MS14DCLCT = Low current	IVIS 14DC			

NOTES:

Box 2. Replac numbe of Box 2, 3, ar Examp

Accessories for Tank-Mounted Filters

000

4.00 O.D

808

3.00

The mounting ring is welded directly to the hydraulic reservoir. The filter is then mounted to the mounting ring with bolts converting the filter to a "weld in" design. The mounting ring eliminates the need to drill and tap the hydraulic reservoir.

Model Number	Part Number	A	В	С
ST, RT, RTI, LRT	A-LFT-813	7.00 (178)	5.00 (127)	1.00 (25)
ST, RT, RTI, LRT High Version	A-LFT-1448	7.00 (178)	5.00 (127)	1.50 (38)
ZT	A-LFT-1295	6.25 (159)	3.62 (92)	.88 (22)

The diffuser option (designated as D for outlet porting option in model number) is threaded to the bushing on the filter bowl below the outlet opening to help decrease turbulent flow in the hydraulic reservoir.

No other outlet port options are available if the diffuser is used.

Model Number	Part Number	NPTF
RT, KFT	A-LFT-1506	1½"
LRT	A-LFT-1507	2"

The check valve option (designated as C for outlet porting option in model number) makes it possible to service the filter without draining the oil from the reservoir when the filter is mounted below the oil level. It also prevents reservoir siphoning when system components are serviced.

The check valve can also be used on other reservoir return flow lines, where components upstream of the check valve can be serviced without the loss of reservoir oil. The spring setting is .75-1.00 psi cracking. Order by part number shown in chart.

No other outlet port options are available if the check valve is used.

Model Number	Part Number	NPTF	А
ST, KFT, RT	A-LFT-158Q-1	1½"	2.34 (59)
LRT	A-LFT-880	2"	2.34 (59)
BFT	A-BFT-103	3"	4.50 (114)

The diffuser/check valve option (designated as CD for outlet porting option in model number) is threaded on to the outlet port and combines the advantages of both separate options in one assembly.

Available as a separate item with $1^{\prime}\!\!/_2$ " NPT female threads, order part number A-LFT-1208.

No other outlet port options are available if the check valve/ diffuser is used.

	TF1
Mounting Ring	KF3
for ST, ZT, RT, RTI and	KL3
LRT Models	LF1
	MLF1
	RLD
	GRTB
	MTA
Diffuser for KFT, RT and	MTB
LRT Models	ZT
	AFT
	KFT
	RT
Check Valve	RTI
for ST, KFT, RT, LRT and BFT	LRT
Models	ART
	BRT
	TRT
	BFT
	QT
	KTK
Check	LTK
Valve Diffuser	MRT
Combination for KFT and RT Models	Accessories For Tank- Mounted Filters

PAF1

IRF

Accessories for Tank-Mounted Filters

Tube Adapter Outlet Port for KFT, RT, LRT and BFT Models

The tube adapter outlet port option (designated as T for outlet porting option in model number) provides the means to direct flow to the bottom of the hydraulic reservoir. Other tube lengths are available for quantity purchases. Contact your Schroeder distributor for details.

Model Number	Dimension A (O.D.) in. (mm)
RT	1.62 (41)
LRT	2.25 (57)
BFT	3.50 (89)

The threaded male outlet port is standard on the KFT, RT, LRT and BFT models, and is available as an option on the ZT filter by designating OP for the outlet porting options in the model number.

Note: No other outlet port options are available if the tube adapter is used.

- RT is furnished with 1½" NPT Male (standard)
- and BFT Models

Threaded Outlet

Port for ZT, KFT, RT, LRT

- LRT is furnished with 2" NPT Male (standard)
- KFT is furnished with 1 1/2" NPT Male (standard)
- BFT is furnished with 3" NPT Male (standard)
- ZT is furnished with 1½" NPT Male (optional)

	Spin-On Filter	PAF1	IRF
			TF1
Model No. of filter in photograph is PAF16	 Features and Benefits Spin-On with full ported die cast aluminum head for minimal pressure drop Offered in pipe and SAE straight thread porting Spin-On thread = 1.00-12UNF-2B Visual gauge or electrical switch dirt alarms Small profile for use in limited space Same day shipment model available 	20 gpm 75 L/min 100 psi 7 bar	KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT AFT KFT RT
		Filter	LRT
Flow Rating: Max. Operating Pressure:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids 100 psi (7 bar)	Housing	ART

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter	рт
Max. Operating Pressure:	100 psi (7 bar)	Housing	RT
Min. Yield Pressure:	150 psi (10 bar), per NFPA T2.6.1	Specifications	RT
Rated Fatigue Pressure:	Contact factory	D	111
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	т	RT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 36 psi (2 bar)		FT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		
Weight of PAF1-6P:	1.8 lbs. (0.8 kg)	(QT
Element Change Clearance:	2.50" (65 mm)	K.	ТК
		R R R R R R R R R R R R R R R R R R R	IN

. . -

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility	For Tank-
High Water Content	3 and 10 μ Z-Media [®] (synthetic)		Mounted
Invert Emulsions	10 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3 and 10 μ Z-Media" (synthetic)		PAF1
			MAF1
			MF2

PAF1 Spin-On Filter

Installation instructions included on element.

Metric dimensions in ().

		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\hat{B}_{x}^{(c)} \geq 200$	$\beta_x(c) \ge 1000$
P10	15.5	16.2	18.0	N/A	N/A
PZ10	7.4	8.2	10.0	8.0	10.0
PZ25	18.0	20.0	22.5	19.0	24.0
	P10 PZ10	Using automated Element ß. ≥ 75 P10 15.5 PZ10 7.4	Using automated particle counter (APC) can $\beta_{\rm c} \ge 75$ Element $\beta_{\rm c} \ge 75$ $\beta_{\rm c} \ge 100$ P1015.516.2PZ107.48.2	P10 15.5 16.2 18.0 PZ10 7.4 8.2 10.0	Using automated particle counter (APC) calibrated per ISO 4402Using APC calibrated per ISO 4402Iso APC calibrated per ISO 440

Element	DHC (gm)	Element	DHC (gm)	
P10	37			
PZ10	16.8	PZ25	23.0	

Element Collapse Rating: 100 psid (7 bar) Flow Direction: Outside In Element Nominal Dimensions: 3.75" (95 mm) O.D. x 5.5" (140 mm) long

Element Performance Information & Dirt Holding Capacity

Spin-On Filter

PAF1

 $\Delta P_{\rm housing}$ PAF1 $\Delta P_{\rm houses}$ for fluids with sp gr (specific gravity) = 0.86:

20

25

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{bousing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{mer} at 10 gpm (37.9 L/min) for PAF16PZ25PY2 using 160 SUS (34 cSt) fluid.

0

5

10

15

Flow Rate [GPM]

Use the housing pressure curve to determine $\Delta P_{\text{nonling}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the PAF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 1.5 psi (.10 bar) according to the graph for the PZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_r) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] | \Delta P_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 2 \text{ psi} + (1.5 \text{ psi} * 1.1) = 3.7 \text{ psi}$ \underline{OR} $\Delta P_{\text{max}} = 14 \text{ bar} + (.10 \text{ bar} * 1.1) = .25 \text{ bar}$ Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_{f} \text{Plug}$ this variable into the overall pressure drop equation. Ele. ΔP P10 0.17

SCHROEDER INDUSTRIES 329

Spin-On Filter

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

PAF1

How to Build a Valid Model Number for a Schroeder PAF1: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6

	DOV I		DOVZ	_	DOV 2		DOV 4		DOV 2	_	DOV 0	
	PAF1			_		_						
Ex	ample: NC	TE: OI	ne optior	n per	box							
	BOX 1		BOX 2		BOX 3		BOX 4		BOX 5		BOX 6	
	PAF1		6	_	P10	_		_	Р	_	Y2	= PAF16P10PY2

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
	6	P10 = P size 10 μ E media (cellulose)	Omit = Buna N
PAF1		PZ10 = P size 10 μ Excellement [*] Z-Media [*] (synthetic)	
		PZ25 = P size 25 μ Excellement [*] Z-Media [*] (synthetic)	

BOX 5	BOX 6	
Inlet Porting	Dirt Alarm [®] Options	
P = 3/4" NPTF	Omit = None	
S = SAE-12	Visual	Y2 = Back-mounted tri-color gauge
	Electrical	ES = Electric switch

NOTE:

Box 2. Replacement element part numbers are a combination of Boxes 3 and 4. Example: P10

Spin-On Filter MAF1 50 gpm 190 L/min Features and Benefits 100 psi 7 bar Spin-On with full ported die cast aluminum head for minimal pressure drop Offered in pipe, SAE straight thread and ISO 228 porting Spin-On thread = 1.50-16UN-2B Visual gauge or electrical switch dirt alarms Small profile for use in limited space Available in 7" and 10" element lengths Available with NPTF inlet and outlet female test ports Model No. of filter in photograph is MAF17M10S.

Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids	Filter AF	рт
Max. Operating Pressure:	100 psi (7 bar)	Housing	a i
Min. Yield Pressure:	200 psi (10 bar), per NFPA T2.6.1	Specifications	RT
Rated Fatigue Pressure:	Contact factory		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	TE	RT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)		FT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		
Weight of MAF1-7M: Weight of MAF1-10M:	4.2 lbs. (1.9 kg) 5.0 lbs. (2.3 kg)	(ΩT
Element Change Clearance:	2.50" (65 mm)	KI	ΤK
		_	

Type Fluid	Appropriate Schroeder Media	Fluid	Accessories
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility	For Tank-
High Water Content	3 and 10 μ Z-Media $^{\circ}$ (synthetic)		Mounted
Invert Emulsions	10 μ Z-Media [®] (synthetic)		Filters
Water Glycols	3 and 10 μ Z-Media $^{\circ}$ (synthetic)		
			PAF1
			MAF1
			MF2

MAF1 Spin-On Filter

SPIN-ON THREAD=1.50-16UN-2B

Installation instructions included on element.

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß, ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0
10MZW10	N/A	N/A	N/A	6.9	8.6

Element	DHC (gm)	Element	DHC (gm)	
7MZ3	105			
7MZ10	104	10MZW10	53	
	Element Collapse Rating:	100 psid (7 bar))	
	Flow Direction:	Outside In		
	Element Nominal Dimensions:	7M: 5.0" (125 i	mm) O.D. x 7.0" (180 mm) long	
		10M: 5.0" (125 i	mm) O.D. x 10.5" (261 mm) long	

Spin-On Filter MAF1

 ΔP_{housin} MAF1 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{mer} at 40 gpm (151.6 L/min) for MAF17MZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the MAF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V,) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{houses} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_{\text{r}}$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta P_{\text{filter}} = 3 \text{ psi} + (7 \text{ psi} * 1.1) = 10.7 \text{ psi}$ <u>OR</u> $\Delta P_{\text{filter}} = .21 \text{ bar} + (.48 \text{ bar} * 1.1) = .74 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_{f} Plug this variable into the overall pressure drop equation.

Ele.	ΔP
7M3	0.23
7M10	0.14

SCHROEDER INDUSTRIES 333

MAF1 Spin-On Filter

Filter Model Number Selection	BOX 1 MAF1 -	Build a Valid Model Number for a Schroeder MAF1:					
Selection	BOX 1 MAF1 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
	BOX 1	BOX 2	BOX 3	BOX 4			
	Filter Series	Element Length (in)	Element Size and Media	Seal Material			
	MAF1	7	M3 = M size 3 µ E media (cellulose) Omit = Bur				
		10	M10 = M size 10 µ E media (cellulose) V =Viton*				
			MZ3 = M size 3 μ Excellement [*] Z-Media [*] (synthetic)				
			MZ10 = M size 10 µ Excellement [®] Z-Media [®] (synthetic)				

BOX 5	BOX 6		BOX 7
Porting Options		Dirt Alarm [®] Options	Additional Options
P = 1¼" NPTF	Omit = None		Omit = None
S = SAE-20	Visual	Y2 = Back-mounted tri-color gauge	L = Two 1/8" NPTF
B = ISO 228 G-11/4"	Electrical	ES = Electric switch	inlet and outlet female test ports

MZW10 = M size 10 µ Aqua-Excellement[™] ZW media MW = M size W media (water removal)

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. Examples: M3V; 10MZ3V 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. For option V, all aluminum parts are anodized. Viton^{*} is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

	Spin-On Filter	MF2	IRF
			TF1
		60 gpm	KF3
	Features and BenefitsSpin-On with full ported cast iron head	<u>230 L/mir</u> 150 psi	KL3
	for minimal pressure drop	10 bar	LF1
	 Offered in pipe, SAE straight thread and ISO 228 porting 		MLF1
Street and a	 Spin-On thread = 1.50-16UN-2B Various Dirt Alarm[*] options 		RLD
	 Available in 7" and 10" element lengths 		RLD
HIDOIIST			GRTB
MIDELLE S			MTA
			МТВ
			ZT
			AFT
			KFT
			RT
Model No. of filter in photograph is MF27M1	0SD5.		
		514	RTI
Flow Rating: Max. Operating Pressure:	Up to 60 gpm (230 L/min) for 150 SUS (32 cSt) fluids 150 psi (10 bar)	Filter Housing	LRT
Min. Yield Pressure:	250 psi (17 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	Contact factory		ART
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)		
Porting Head:	Cast Iron		TRT
Element Case: Weight of MF2-7M:	Steel 8.6 lbs. (3.9 kg)		BFT
Element Change Clearance:	1.50" (40 mm)		ОТ
			QT
			KTK
			LTK
			МОТ
			MRT
	iate Schroeder Media	Fluid Compatibility	Accessories
	dia (cellulose) and Z-Media" (synthetic)	Compatibility	For Tank-
	High Water Content 3 and 10 μ Z-Media* (synthetic) Invert Emulsions 10 μ Z-Media* (synthetic)		Mounted Filters
	μ Z-Media [*] (synthetic)		
			PAF1
			MAF1
			171711
			MF2

MF2

Spin-On Filter

Installation instructions included on element

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0
10MZW10	N/A	N/A	N/A	6.9	8.6

Element	DHC (gm)	Element	DHC (gm)	
7MZ3	105			
7MZ10	104	10MZW10	53	
	Element Collapse Rating:	100 psid (7 bar)		
	Flow Direction:	Outside In		
El	ement Nominal Dimensions:	7M: 5.0" (125 mm) O.D. x 7.0" (180 mm) long		
		10M: 5.0" (125 mi	n) O.D. x 10.5" (261 mm) long	

Spin-On Filter

MF2

 $\Delta P_{\rm housing}$ MF2 $\Delta P_{\rm housing}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for MF27MZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{touring}}$ at 40 gpm. In this case, $\Delta P_{\text{touring}}$ is 5 psi (.34 bar) on the graph for the MF2 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_{ρ}) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{mer} , is calculated by adding ΔP_{bound} with the true element pressure differential, ($\Delta P_{\text{stement}} * V_f$). The $\Delta P_{\text{stement}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] | \Delta P_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 5 \text{ psi} + (7 \text{ psi} * 1.1) = 12.7 \text{ psi}$ $\frac{OR}{\Delta P_{\text{max}}} = .34 \text{ bar} + (.48 \text{ bar} * 1.1) = .87 \text{ bar}$

Note:

if your element is not graphed, use the					
following equation:					
$\Delta P_{element} = Flow Rate x \Delta P_{z} Plug$					
this variable into the overall pressure					
drop equation.					
Ele.	ΔΡ				
7M3	0.23				

Spin-On Filter

Filter Model Number Selection

MF2

How to Build	l a Valid M	odel Numb	per for a So	chroeder N	VF2:	
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	

	MF2			_		_]-[
Exa	mple: Op	otion	I NOTE: (One c	ption per	box					
	BOX 1		BOX 2		BOX 3		BOX 4		BOX 5	BOX 6	
	MF2		7	_	M3	_]-[Р	 D5	= MF27M3PD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Size and Media	Seal Material	Porting Options
MED	7	M3 = M size 3 μ E media (cellulose)	Omit = Buna N	P = 1¼" NPTF
MF2 10		M10 = M size 10 μ E media (cellulose)	V = Viton [®]	S = SAE-20
		MZ3 = M size 3 μ Excellement [*] Z-Media [*] (synthetic)		B = ISO 228 G-1¼"
		$MZ10 = M$ size 10 μ Excellement [*] Z-Media [*] (synthetic)		
		MZW10 = M size 10 µ Aqua-Excellement [™] ZW media		
		MW = M size W media (water removal)		

BOX 6						
		Dirt Alarm [®] Options				
	Omit =	None				
Visual	D5 =	Visual pop-up				
Visual with Thermal Lockout	D8 =	Visual w/ thermal lockout				
	MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable				
	MS5LC =	Low current MS5				
	MS10 =	Electrical w/ DIN connector (male end only)				
	MS10LC =	Low current MS10				
Flectrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire				
Electrical	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)				
	MS12LC =	Low current MS12				
	MS16 =	Electrical w/ weather-packed sealed connector				
	MS16LC =	Low current MS16				
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector				
	MS5T =	MS5 (see above) w/ thermal lockout				
	MS5LCT =	Low current MS5T				
	MS10T =	MS10 (see above) w/ thermal lockout				
Electrical with	MS10LCT =	Low current MS10T				
Thermal	MS12T =	MS12 (see above) w/ thermal lockout				
Lockout	MS12LCT =	Low current MS12T				
	MS16T =	MS16 (see above) w/ thermal lockout				
	MS16LCT =	Low current MS16T				
	MS17LCT =	Low current MS17T				
Electrical	MS13 =	Supplied w/ threaded connector & light				
Visual	MS14 =	Supplied w/ 5 pin Brad Harrison connector & light (male end)				
Electrical	MS13DCT =	MS13 (see above), direct current, w/ thermal lockout				
Visual	MS13DCLCT =	Low current MS13DCT				
with Thermal Lockout	MS14DCT =	MS14 (see above), direct current, w/ thermal lockout				
inermai Lockout	MS14DCLCT =	Low current MS14DCT				

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. Example: M3; 10MZ3 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

338 SCHROEDER INDUSTRIES

Section 6 Suction Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Tank-Mounted Suction Filter				
	<u>ST</u>	NA	20 (75)	K, KT	341
S	Top-Ported Suction Filter				
Filters	<u>SKF3</u>	300 (20)	25 (95)	KT	345
	In-Line Magnetic Suction Separators				
Suction	<u>TF-SKB</u>	NA	12.5 (47)	SKB	349
		NA	35 (130)	SKB	350
	Tank-Mounted Magnetic Suction Separator				
	<u>BFT-SKB</u>	NA	75 (285)	SKB	351

20 gpm 75 L/min

Features and Benefits

- Tank-mounted suction filter for hydrostatic suction service
- Optional check valve prevents reservoir siphoning
- Easy Element changeout
- Inlet filter protects pump, reduces start-up failures

Model No. of filter in photograph is ST1K10SY.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	Suction Filter	Housing
Min. Yield Pressure:	Not Applicable	Specifications
Rated Fatigue Pressure:	Not Applicable	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
Bypass Setting:	Non-bypassing	
Porting Head:	Die Cast Aluminum	
Cap:	Steel	
Element Case:	Steel	
Weight of ST-1K:	11.1 lbs. (5.0 kg)	
Weight of ST-2K:	14.7 lbs. (6.7 kg)	
Element Change Clearance:	7.25" (185 mm) for 1K; 17.50" (445 mm) for KK	

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose) and Z-Media [*] (synthetic)	Compatibility
High Water Content	10 μ Z-Media [*] (synthetic)	
Invert Emulsions	10 μ Z-Media [®] (synthetic)	
Water Glycols	10 μ Z-Media [*] (synthetic)	
Phosphate Esters	10 μ Z-Media * (synthetic) with H (EPR) seal designation and 10 μ E media (cellulose) with H (EPR) seal designation	
Skydrol*	10 μ Z-Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

ST

0.90

0.80

$\Delta P_{\text{housing}}$

ST $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

KTZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM] 50 150 200 250 100 2.50 Z3

Flow Rate [GPM]

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for ST1KTZ10PY using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) according to the graph for the ST element.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is .75 psi (.05 bar) according to the graph for the KZT10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (Vf) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{housing}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 1.5 \text{ psi} [.75 \text{ bar}] | \Delta P_{\text{element}} = .75 \text{ psi} [.05 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.07 $\Delta P_{\text{filter}} = 1.5 \text{ psi} + (.75 \text{ psi} * 1.07) = 2.3 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .10 \text{ bar} + (0.05 \text{ bar} * 1.07) = 0.15 \text{ bar}$

Pressure	ST
Drop Information Based on Flow Rate	SKF3
and Viscosity	TF-SKB
	KF3-SKB
	BFT-SKB

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f$ Plug this variable into the overall pressure drop equation.

Ele.	ΔP	Ele.	ΔP	Ele.	ΔP
K3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

Filter Model Number Selection	Model BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 Number ST - - - - - - -							
	BOX 1 BOX 2		BOX 3	BOX 4				
	Filter Number of Series Elements		Element Part Number	Seal Material				
	ST 1 2	KTZ5 = K size 5 μ Excelle KTZ10 = K size 10 μ Exce		Omit = Buna N H = EPR W = Buna N H.5 = $\frac{\text{Skydrol}^{*}}{\text{compatibility}}$				
	BOX 5	BOX 6	BOX 7	BOX 8				
	Outlet Port	Optional Check Valve	Dirt Alarm [®] Options	Additional Options				
	P = 1½" NPTF PP = Dual 1½" NPTF S = SAE 24 SS = Dual SAE 24 B = ISO 228 G-1½" BB = ISO 228 G-1½"	Omit = None C = Check Valve	Omit = None Visual Y = Vacuum gauge YR = Vacuum gauge mounted on opposite side of standard location Electrical VS = Electrical Vacuum Switch VSR = Electrical Vacuum Switch mounted on opposite side of standard location	Omit = None G2293 = Cork Gasket G547 = Two ½" gauge ports				
			VSR1 = Heavy-Duty Vacuum Switch					

NOTES:

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.

ST

Box 4. For options H and W, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.

Box 6. See also "Accessories for Tank-Mounted Filters," page 299.

Top-Ported Suction FilterSKF3

Features and Benefits

- Top-ported suction filter for hydrostatic suction service
- Easy element changeout
- Inlet filter protects pump, reduces start-up failures
- 2.5 psi suction bypass available

25 gpm	ST
95 L/min 300 psi	SKF3
20 bar	TF-SKB
	KF3-SKB

Model No. of filter in photograph is SKF31KTZ25S2.5Y

Flow Rating:	Up to 25 gpm (95 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	300 psi (20 bar)	Housing
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1	Specifications
Rated Fatigue Pressure:	290 psi (20 bar), per NFPA T2.6.1-2005	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
Bypass Setting:	Cracking: 2.5 psi (0.2 bar) Full Flow: Contact Factory	
Porting Base:	Die Cast Aluminum	
Element Case:	Steel	
Weight of SKF3:	10.5 lbs. (4.8 kg)	
Element Change Clearance:	1.50" (40 mm) for all lengths	

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E-Media (cellulose), Z-Media®	Compatibility
High Water Content	All Z-Media [®]	
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic)	
Phosphate Esters	All Z-Media $^{\circ}$ (synthetic) with H (EPR) seal designation and 3 and 10 μ E-Media (cellulose) with H (EPR) seal designation	
Skydrol®	3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation	

Top-Ported Suction Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

SKF3

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio Using APC calibra	per ISO 16889 ted per ISO 11171
Element	ß _x ≥75	ß _X ≥100	$\beta_X \ge 200$	ß _X (c) ≥ 200	$\beta_X(c) \ge 1000$
KTZ1/GKTZ1	<1.0	<1.0	<1.0	<4.0	4.2
KTZ3/GKTZ3	<1.0	<1.0	<2.0	<4.0	4.8
KTZ5/GKTZ5	2.5	3.0	4.0	4.8	6.3
KTZ10/GKTZ10	7.4	8.2	10.0	8.0	10.0
KTZ25/GKTZ25	18.0	20.0	22.5	19.0	24.0

Dirt Holding Capacity

Element	DHC (gm)
KTZ1/GKTZ1	112
KTZ3/GKTZ3	115
KTZ5/GKTZ5	119
KTZ10/GKTZ10	108
KTZ25/GKTZ25	93

Element Collapse Rating:150 psid (10 bar) for standard elementsFlow Direction:Inside OutElement Nominal Dimensions:K:3.9" (99 mm) O.D. x 9.0" (230 mm) long

Top-Ported Suction Filter SKF3

4	ΔP _{hot}	using											Pressure
1	SKF3 /	∆P _{housing} f	or fluids wi	th sp gr (specific	gravity) =	= 0.86:						Drop
				Flow (L	/min)								Information
		o	(20)	(40)	(60)	(80)	_						Based on
		8 6					(0.50)						Flow Rate and Viscosity
		zi.					1	Dar)					, í
		isq ¶∆					(0.25)						
		2					-						
		0 L	5	10		20 2	.5						
1	∆P _{eler}	ment		Flow g	pm								
	(TZ1												
	(121	Eleme	ent Pressu	re Drop	versus F	low Rate	e at 32	cSt (15	0 SUS)				
					Flow Rat								
		0 1	10 20	30	,	40	50	60	70				
	2.50		· · · · · ·			21		'		0.16			
5	2.00				\rightarrow	/			Z3	- 0.14	~		
PSIC	1.50								Z5	- 0.12	[BAF		
rop	1.50					/				- 0.10	do L		
re D	1.00		-			\geq			Z10	- 0.06	E D		
Pressure Drop [PSID]	0.50			\bigcirc				—	Z25	- 0.04	Pressure Drop [BAR]		
P										- 0.02	ā		
	0.00	0	5		10		1	.5	2	L 0.00			

Curves Also Available Upon Request

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + (\Delta P_{\text{element}} * V_{\text{f}})$

Flow Rate [GPM]

Exercise:

Determine ΔP_{filter} at 20 gpm (76 L/min) for SKF31KTZ25S2.5Y using 200 SUS (44 cSt) fluid.

Use the housing pressure curve to determine ΔPhousing at 20 gpm. In this case, ΔPhousing is 0.7 psi (.05 bar) on the graph for the SKF3 housing.

Use the element pressure curve to determine ΔPelement at 20 gpm. In this case, ΔPelement is 0.8 psi (.06 bar) according to the graph for the 1KTZ25 element.

Because the viscosity in this sample is 200 SUS (44 cSt), we determine the Viscosity Factor (f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, Δ Pfilter , is calculated by adding Δ Phousing with the true element pressure differential, (ΔPelement*Vf). The ΔPelement from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta P_{\text{housing}} = 0.7 \text{ psi} [.21 \text{ bar}] | \Delta P_{\text{element}} = 0.8 \text{ psi} [.415 \text{ bar}]$

V_f = 200 SUS (42.4 cSt) / 150 SUS (32 cSt) = 1.333 $\Delta P_{filter} = 0.7 \text{ psi} + (0.8 \text{ psi} * 1.333) = 1.8 \text{ psi}$ OR $\Delta P_{\text{filter}} = .05 \text{ bar} + (.06 \text{ bar} * 1.333) = .13 \text{ bar}$

essure	ST
op ormation ed on w Rate	SKF3
l Viscosity	TF-SKB
	KF3-SKB

Filler									
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 SKF3								
Number									
Selection									
	BOX 1 BOX 2 BOX 3 SKF3 - 1K - Z -	BOX 4	BOX 5 BOX 6 BOX 7 BOX 8 - S - 2.5 - Y =SKF	31KT	Z25S2.5Y				
		25 -		511(1					
	BOX 1 BOX 2		BOX 3		BOX 4				
	Filter Number Series & Size of		Media Type		Micron Rating				
	SKF3 Elements	Omit	= E media (cellulose)	1 =	= 1µ (Z-Media)				
	GSKF3 GeoSeal	Z	= Excellement [®] Z-Media [®] (synthetic)	3 =	= 3µ (E, Z-Media)				
	(GeoSeal [®]) 1KTG	М	= M Media (reusable metal)	5 =	5μ (Z-Media)				
	= 10μ (E, Z and M-Media)								
				25 =	25μ (E, Z and M-Media)				
				60 =	· 60μ (M-Media)				
				150 =	150μ (M-Media)				
	BOX 5		BOX 6		BOX 7				
	Seal Material		Magnetic Core		Porting				
	Omit = Buna N	Omit = No Magnetic Core		P = 11/2" NPTF					
	H = EPR V = Viton [*] M = Magnetic Core S = SAE 24								
	H.5 = Skydrol [®] Compatibilit	v			$F = 1\frac{1}{2}$ " SAE-4-bolt flange Code 61				
	W = Buna N with anodized	·			B = ISO 228 G-11/2"				
_		1- 01 65							

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: KTZ25
- Box 5. For options H, W, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton^{*} is a registered trademark of DuPont Dow Elastomers. Skydrol^{*} is a registered trademark of Solutia Inc.
- Box 7. For option F, bolt thread depth .63" (16 mm). B porting option supplied with metric mounting holes.

BOX 8 Bypass Omit = No Bypass 2.5 = 2.5 psi Suction Bypass

	BOX 9					
	Dirt Alarm [*] Options					
	Omit =	None				
Visual	Y =	Vacuum guage				
Electrical	VS =	Electrical Vacuum Switch				
	VS1 =	Heavy-Duty Vacuum Switch				

Filter How to Build a Valid Model Number for a Schroeder SKF3:

In-Line Magnetic Suction Separators

TF-SKB

Features and Benefits

 Protects components downstream by capturing potentially harmful ferrous particles

Specifications

Flow Rating:	12.5 gpm (47 L/min)
Element Replacement Part Number:	SKB-1
Element Change Clearance:	2.5" (65 mm)
Weight of TF-SKB:	5.8 lbs (2.6 kg)

Metric dimensions in ().

How to Build a Valid Model Number for a Schroeder TF-SKB:

BOX 1 BOX 2 BOX 3 BOX 4 TF-SKB	
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4	
TF-SKB – – P – Y =TF-SKBPY	

BOX 1 BOX 3 BOX 4 BOX 2 Filter Series Seal Material Porting Dirt Alarm[®] Options Omit = Buna N P = 1" NPTF Omit = None **TF-SKB** Visual Y = Vacuum gauge Electrical VS = Electrical Vacuum Switch VS1 = Heavy-Duty Vacuum Switch Filter Model Number Selection

NOTE: Box 1. Element replacement part number: SKB-1.

-3-SKB In-Line Magnetic Suction Separators

NOTE: Box 1. Element replacement part number: A-LF-1789.

Tank-Mounted Magnetic Suction Seperators BFT-SKB

Magnet Inserts for Filters

Magnet Inserts for Filters

K9, 2K9/3K9, MKF50, MKC50, KF5, IRF, KL3, KF30, KF50, KC50, KC65 and TF50 are available with magnet inserts to trap ferrous material that passes through the filter element.

These inserts are removed with the element each time service is performed and cleaned before being reinserted with new elements.

Replacements are available by ordering parts:

Replacements are available by ordering parts:	Single Element	Double Element	Triple Element
K9, 2K9/3K9, MKF50, MKC50, KF5, IRF, KL3, KF30, KF50, KC50, KC65, KF3, LF1, MLF1	A-LF-1592	A-LF-1593	A-LF-1594
TF50	A-TF-301-1	A-TF-302-1	

Filter Dirt Alarm[®] Selection

Appendix A

Visual indicators provide an economical way to know at a glance when a filter element needs to be replaced. A variety of styles are available, ranging from gauges to mechanical pointers and pop-up cartridges.

Schroeder pointers use a tricolor disk to indicate the element condition. The pointer will reach the red section just before bypassing occurs.

In the case of a mechanical magnetic cartridge, a highly visible orange disk springs, or "pops up", at the pre-defined setting. Once activated, the orange signal continues to indicate a bypass or clogged condition, even following equipment shutdown, until it is manually reset. The pop-up indicator is interchangeable with other cartridge style indicators (electrical and electrical visual) available from Schroeder. A high pressure (>6000 psi working pressure) of the pop-up indicator is available and is noted below.

D—Tricolor Pointer Dirt Alarm P/N 7619323 for plastic pointer only. For internal linkage and name plate, contact factory.

- -Vacuum Gauge mounted in porting head P/N 7631068
- YR—Same as Y but mounted on opposite side of standard location P/N 7631068

- D5—Red Pop Up Visual Indicator
- D5S*-D5 with Protective Shroud *To order Protective Shroud only, use SAP #7642053
- D5C—Same as D5 but mounted in cap
- D5R—Same as D5 but mounted on opposite side of standard location
- D9—Stainless Steel version of D5
- D9C—Stainless Steel version of D5 mounted in cap

- Y2—Back mounted 1/8" NPT Tricolor Glycerin-filled Gauge (0-60 psi) P/N 7627463 (0-100 psi) P/N 7631048
- Y2R—Same as Y2 but mounted on opposite side of standard location P/N 7627463
- Y2C—Bottom mounted 1/8" NPT Tricolor Gauge (0-60 psi) located in cap P/N 7626647
- Y5—Same as Y2 but located in cap P/N 7627463

LF-4209 (G2213): 0 - 30 psid; P/N 7626589

DPG—Standard Differential Pressure Gauge P/N 7628635 or 7626554

The thermal lockout feature prevents activation of the indicator below temperatures of 90°F (32°C). This is a welcome feature in mobile applications where fluid temperatures may be well below 90°F at equipment start-up, and will prevent the indicator from showing a premature need to change the element.

D8—Orange Pop Up Visual Indicator with Thermal Lock-out D8C—Same as D8 but mounted in cap

D8R—Same as D8 but mounted on opposite side of standard location

Visual

Visual with Thermal Lockout

Appendix A Filter Dirt Alarm[®] Selection

Electrical Visual

In addition to providing an electrical signal to provide a desired action, Schroeder electrical visual indicators also provide a visual indication of when an element needs to be changed. In the case of the MS and MS2 switches, the visual indicator is a color-coded disk, whereas the MS13 and MS14 dirt alarms provide a light.

MS—Cam operated electrical switch P/N 7627458 for switch only. For cam, color-coded disk, and mounting bracket, order P/N 7604908. For internal linkage, contact factory.

,			
Code	Type of Contact	Electrical Rating	Connection
MS	SPDT	15 Amps @ 125/250 vac, 0.5 Amp @ 125 VDC	½" conduit, female

Electrical

The electrical indicators (MS Series) provide an electrical signal for activating various electric alarm systems or complete machine shutdown. These cartridge-style indicators are available on most Schroeder pressure, return line, and medium pressure filters and can be used for working pressures up to 6000 psi (415 bar) and cyclic conditions up to 4000 psi (276 bar).

- The design is modular; all electrical indicators consist of an MS10 indicator with the corresponding mating connector added to convert the MS10 to a MS5, MS11 etc.
- The standard micro switch for high current indicators is good for both AC and DC use. A separate micro switch with "gold" contacts is used for low current applications. This means that specification of AC or DC is no longer required (except for MS13 and MS14) in the indicator code or part number.
- · Housings of all electrical indicators are made of aluminum.
- The indicator model tag includes the electrical wiring diagram.
- · All of our indicators, with the exception of MS16, have a "ground" terminal.
- We are now able to offer the thermal lockout option to high current indicators.
- All indicators can be installed in a filter cap as the wiring harness can be disconnected at the "DIN" connector in order to remove the filter cap.
- All MS indicators have achieved the NEMA4X and IP65 ratings.
- Information on these indicators, including drawing, circuit diagram, and photograph is provided on the following pages.
- A different set of electrical pressure switches is available for Schroeder tank-mounted filters, along with heavy duty versions.

Schroeder suction filters (ST and models that house the SKB magnetic suction strainer) can be equipped with a vacuum switch.

VS—Vacuum Switch (1/8" NPT, normally open) P/N 7601947

VSR—Same as VS but mounted on opposite side of standard location P/N 7601947

ES—Standard electrical pressure switch (1/8" NPT, normally open) for tank-mounted filters P/N 7601943 (40 psi bypass)

ESC—Electrical pressure switch (MTA & MTB only) P/N 7601943

ESR—Same as ES but mounted on opposite side of standard location

P/N 7601943

Type of Contact Code ES SPST ES1 SPDT

with conduit connection (25psi bypass) P/N 7626636 (cracking over 25 psi) P/N 7626640 (43 psi bypass) P/N 7626640 (Black = common; Red = N.O.; Blue = N.C.)

ES1—Heavy duty electrical pressure switch (1/8" NPT)

ES1R—Same as ES1 but mounted on opposite side of standard location P/N 7626636

VS1—Heavy Duty Vacuum Switch (1/8" NPT) P/N 7623755, LF Pressure Switch

ES2— Super duty electric switch (1/8"NPT, normally closed) with thermal lockout P/N 7626564

ES3—Electric pressure switch (1/8"NPT) with DIN connector P/N 7626592 (Black = common; Red = N.O.; Blue = N.C.)

Electrical Rating	Connection
8 Amps @ 12 VDC, 1 Amp @ 120 VAC 4 Amps @ 24 VDC, 0.5 Amp @ 240 VAC	Screw Terminal with Rubber Boot
10 Amps @ 115 VAC 50mA-5A @ 24 VDC	½" Conduit, Male

 \sqrt{c} = cap installation only.

Appendix A

Filter Dirt Alarm[®] Selection

SCHROEDER INDUSTRIES 355

Appendix A Filter Dirt Alarm[®] Selection

Electrical and Electrical with Thermal Lockout (cont'd.)

Appendix A

Filter Dirt Alarm[®] Selection

Appendix A Filter Dirt Alarm[®] Selection

Filter Dirt Alarm[®] Selection Appendix A

CHART 5 Electrical Ratings: Electrical Cartridge Indicators Without Thermal Lockout																								
Voltage	Voltage Volts@ Amps	Current Range (amps)	MS5	MS5LC	MS10	MS10LC	MS11	MS12	MS12LC	MS13DC	MS13DCLC	MS14DC	MS14DCLC	MS15DC	MS16	MS16LC	MS17	MS17LC	MS14AC	MS14ACLC	MS18	MS18LC	MS19	MS19LC
AC	240 @ 3	0.02 to 3	\checkmark		\checkmark		\checkmark	\checkmark										\checkmark						
AC	220 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark													\checkmark		\checkmark
AC	120 @ 5	0.02 to 5	\checkmark		\checkmark		\checkmark	\checkmark																
AC	120 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark											\checkmark		\checkmark		\checkmark
AC	24@0.10	0.005 to 0.010		\checkmark		\checkmark			\checkmark											\checkmark				
AC	12 @ 0.25	0.005 to 0.025		\checkmark		\checkmark			\checkmark											\checkmark				
AC	120 @ 4	0.05 to 4																	\checkmark					
AC	115 @ 0.05	0.01 to 0.05															\checkmark				\checkmark		\checkmark	
DC	110 @ 0.3	0.02 to 0.3	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark		\checkmark				\checkmark		\checkmark	
DC	110 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark							\checkmark		\checkmark				\checkmark		\checkmark
DC	24@3	0.01 to 3																			\checkmark		\checkmark	
DC	24 @ 2	0.02 to 2	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark			\checkmark									
DC	24 @ 1	0.01 to 1															\checkmark							
DC	24 @ 0.20	0.0 to 0.20												\checkmark										
DC	24@0.10	0.005 to 0.10		\checkmark		\checkmark			\checkmark		\checkmark		\checkmark			\checkmark		\checkmark				\checkmark		\checkmark
DC	12 @ 5	0.01 to 5																			\checkmark		\checkmark	
DC	12@2	0.02 to 2	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark			\checkmark									
DC	12 @ 1	0.01 to 1															\checkmark							
DC	12@0.25	0.005 to 0.25		\checkmark		\checkmark			\checkmark		\checkmark		\checkmark			\checkmark		\checkmark				\checkmark		\checkmark

CHART 6 Electrical Ratings: Electrical Cartridge Indicators With Thermal Lockout*

Voltage	Voltage Volts @ Amps	Current Range (amps)	MS5T	MS5LCT	MS10T	MS10LCT	MS12T	MS12LCT	MS13DCT	MS13DCLCT	MS14DCT	MS14DCLCT	MS16T	MS16LCT	MS17	MS17T	MS17LCT	MS14ACT	MS14ACLCT	MS18	MS18T	MS18LCT	MS19	MS19T	MS19LCT
AC	120 @ 5	0.02 to 5	\checkmark		\checkmark		\checkmark																		
AC	220 @ 0.05	0.005 to 0.05		\checkmark		\checkmark		\checkmark											\checkmark			\checkmark			\checkmark
AC	120 @ 5	0.05 to 4																\checkmark							
AC	115 @ 0.05	0.01 to 0.05													\checkmark						\checkmark			\checkmark	
DC	24@2	0.02 to 2	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			\checkmark					\checkmark			\checkmark	
DC	24 @ 0.10	0.005 to 0.10		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			\checkmark					\checkmark			\checkmark
DC	12@2	0.02 to 2	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			\checkmark					\checkmark			\checkmark	
DC	12 @ 0.25	0.005 to 0.25		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			\checkmark					\checkmark			\checkmark

*Thermal lockout prevents activation below 80°

Note: All indicators in Charts 4 and 5 above, meet NEMA4X and IP65 specifications.

Appendix B Viscosity Charts

360 SCHROEDER INDUSTRIES

Glossary of Standard Terms

ABSOLUTE FILTRATION RATING: The diameter of the largest hard spherical particle that will pass through a filter under specified test condition. This is an indication of the largest opening in the filter element. It does not indicate the largest particle that will pass through the element, since particles of greater length than diameter may pass.

CAVITATION: A localized condition within a liquid stream causing the rapid implosion of a gaseous bubble.

CELSIUS: A temperature scale. 0 Celsius (or 0 Centigrade) is the freezing point of water (32° F).

CENTIPOISE: A unit of absolute (dynamic) viscosity.

CENTISTOKE: A unit of kinematic viscosity.

CLEANLINESS LEVEL: The analog of contamination level.

COLLAPSE PRESSURE: The outside-in differential pressure that causes structural failure.

CONTAMINATION LEVEL: A quantitative term specifying the degree of contamination.

CONTAMINANT: Any material or substance which is unwanted or adversely affects the fluid power system or components, or both.

CONTAMINANT, BUILT-IN: Initial residual contamination in a component, fluid, or system. Typical built-in contaminants are burrs, chips, flash, dirt, dust, fiber, sand, moisture, pipe dope, weld spatter, paints and solvents, flushing solutions, incompatible fluids, and operating fluid impurities.

DEPTH (FILTER): A filter medium which primarily retains contaminant within tortuous passages.

DIRT CAPACITY (DUST CAPACITY)

(CONTAMINANT CAPACITY): The weight of a specified artificial contaminant which must be added to the fluid to produce a given differential pressure across a filter at specified conditions. Used as an indication of relative service life.

EFFICIENCY (FILTER): The ability, expressed as a percent, of a filter to remove specified artificial contaminant at a given contaminant concentration under specified test conditions.

Filter CONFIGURATIONS

Top-Ported Filter: Also known as a T-Ported or In-Line filter. All porting, the bypass valve, and indicators are located in the head. The head is permanently attached to the plumbing and the element is accessed by removing the bowl.

Base-Ported Filter: All porting, the bypass valve, and indicators are located in the base. The base is permanently attached to the plumbing and the element is removed through a cap, instead of removing the entire bowl.

Manifold Mounted Filter: Also known as a Sub-Plate filter. Most Base-Ported filters come with a manifold mount option. In some cases, a Top-Ported filter can also have a manifold mounting option. This allows the filter to be mounted directly onto a manifold, eliminating the need for hoses and fittings.

Cartridge Filter: Can be inserted directly into the manifold, eliminating the need for a separate housing or plumbing. Element is removed through a plug on the manifold.

Sandwich Filter: Is designed to be placed in between and directly interface with a manifold and stacked valves. Eliminates the need for hoses and fittings.

Duplex Filter: Made up of two or more filter assemblies. A valve allows the user to switch from one chamber to another. When one element is fully loaded, fluid is redirected though the second element. The loaded element can be changed without an interruption in flow. In the center position, the valve allows the oil to flow through both filters. ELEMENT (CARTRIDGE): The porous device which performs the actual process of filtration.

FLOW, LAMINAR (STREAMLINE): A flow situation in which fluid moves in parallel lamina or layers. (See Reynold's number.)

FLOW, TURBULENT: A flow situation in which the fluid particles move in a random manner. (See Reynold's number.)

FLUID: A liquid, gas, or combination thereof.

FLUID POWER SYSTEM: A system that transmits and controls power through use of a pressurized fluid within an enclosed circuit.

INDICATOR: A device which provides external visual evidence of sensed phenomena.

INDICATOR, BY-PASS: An indicator which signals that an alternate flow path is being used.

INDICATOR, DIFFERENTIAL PRESSURE: An indicator which signals the difference in pressure between two points.

MICROMETER (MICRON)*: A unit of measurement one millionth of a meter long, or approximately 0.00003937 inch expressed in English Units. *Deprecated.

MIGRATION: Contaminant released downstream.

PRESSURE, CRACKING: The pressure at which a pressure-operated valve begins to pass fluid.

PRESSURE, DIFFERENTIAL (PRESSURE DROP): The difference in pressure between any two points of a system or a component.

PRESSURE, OPERATING: The pressure at which a system is operated.

PRESSURE, RATED FATIGUE: A pressure that a pressure-containing component is represented to sustain 10 million times without failure.

RATED FLOW: The maximum flow that the power supply system is capable of maintaining at a specific operating pressure.

REYNOLD'S NUMBER: A numerical ratio of the dynamic forces of mass flow to the shear stress due to viscosity. Flow usually changes from laminar to turbulent between Reynold's numbers 2,000 and 4,000.

Filter CLASSIFICATIONS Types

Low Pressure Filter*: Filter pressure range from 0 to 500 psi. Mostly applied in return line filtration where system pressure is at a low point.

Medium Pressure Filter*: Filter pressure range from 500 to 1500 psi. Often used in hydrostatic charge pressure applications.

High Pressure Filter*: Filter pressure range is 1500 psi and above. Mostly applied on the pressure side of the system where pressure is highest.

High Pressure Hydrostatic Filter: Used in high pressure hydrostatic closed loop systems. Allows for reverse flow through the system.

Bypass vs. Non-Bypass: The pressure rises as an element becomes loaded with contaminants. Standard filters are equipped with a bypass valve that redirects hydraulic fluid when the pressure drop reaches a predetermined level, so the element does not lose its structural integrity. The filter element is bypassed and fluid continues on through the system.

In non-bypass filters bypass is not optional. They are used to protect expensive components that are more sensitive to contaminants, and cannot be exposed to unfiltered fluid. The element is exposed to higher pressures, as there is no bypass. For that reason this type of filter requires a high crush element to guarantee its structural integrity.

Air Breather: Filters air that is drawn into a reservoir when the fluid level changes.

Desiccant Air Breather: In addition to filtering out particle contaminants, this breather also removes water vapor.

Schroeder Industries LLC wishes to thank both the National Fluid Power Association and Penton Publishing for the use of certain generic terms shown in this glossary. Excerpts taken from ANSI B93.2-1986/NFPA T3.10.3. 1967(R1980) and Penton Publishing's Fluid Power Handbook & Directory (2006-2007).

*These ranges have been determined to provide a quick reference for the purpose of creating our catalog. This is currently no industry standard terminology. These ranges are subject to change.

Other Product Line Catalogs

Filter Systems

The Filter Systems Catalog is designed to take the reader from the basic foundations of the principles of hydraulics found in the H&L catalog, to the tools required for troubleshooting and addressing the cleanliness or performance demands of any fluid system. We produce portable and permanent-mount pressure, flow and temperature evaluation instruments, oil cleanliness analysis devices, particle monitors and water-in-oil identification tools. We also produce a wide array of fluid conditioning tools — from standard in-line hydraulic filters, to sophisticated microprocessor-based instruments incorporating SMART[®] technology.

The products contained in the Fuels Catalog, address issues relating to mobile and stationary equipment working in some of the toughest conditions all over the world. Schroeder's Fuel Filtration line ensures the smooth running of equipment and protects both the engine and the whole drive system from damage, which addresses both onboard and bulk tank requirements.

Fuel Filtration

The keystone product of Schroeder Process Filtration is the RF3 automatic self-cleaning backflush filter. This filter along with bag filters, cartridge filters and custom designed systems allows Schroeder to offer you complete solutions to your process filtration needs. Our process filters are used to remove solid contamination from fluids and protect the integrity of high grade components that depend on low viscosity water or water-based fluids and emulsions. Schroeder offers high performance filters for all industrial sectors. Improvements in operational efficiency, reduced downtime, lower maintenance costs and reduce environmental impact can all be expected.

Process Filtration

To view the full version of our catalogs visit our website: www.schroederindustries.com

Notes Section:

Notes Section Continued:							

Best Filter Delivery Program

Schroeder Industries is pleased to announce the establishment of the Best Filter Delivery Program. We recognize that emergencies arise despite the best planning and forecasting efforts. To be able to offer support and service in these situations, we performed an analysis to determine our top selling filter model numbers. The result is a list of thirteen specific filter assemblies, comprising high pressure, medium pressure, return line, tank-mounted and spin-on models.

For all the models listed, guaranteed shipment is same day, provided we receive the purchase order by 1:00 pm EST. An option to specify element media other than that called for on the web page is available with a 5-day guaranteed ship date after receipt of order. No other substitutions are permitted.

At the onset of this program, a distributor/customer may be limited to a maximum quantity. This may be necessary to enable Schroeder to fulfill its guarantee of adequate inventory to all distributors alike.

The intent of this program is to provide our customers with access to the products they use most often. Therefore, as we witness shifts in filter usage, we will make changes to this list and update the corresponding web page accordingly.

We hope you and your customers find this new program useful in working through unforeseen crisis situations.

Family	Product	Specifications	Standard Part Number	Alternate Elements
High Pressure, Top-Ported	NF30	20 gpm, 3000 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	NF301NZ10SD5	N/A
High Pressure, Top-Ported	DF40	30 gpm, 4000 psi, SAE 1-5/16"-12 straight porting, cartridge dirt alarm	DF401CCZ3SD5	CC10, CCZ5
High Pressure, Base-Ported	GKF30	100 gpm, 3000 psi, 1 element, SAE 1-7/8"-12 straight porting, cartridge dirt alarm	GKF301KGZ10SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Low Pressure, Tank-Mounted	ZT	40 gpm, 100 psi, SAE 1-5/16"-12 straight inlet port, rear mounted tricolor visible dirt alarm	ZT8Z10SY2	N/A
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 2 SAE 1.5″ inlet ports, tricolor visible dirt alarm	GRT1KBGZ10S24S24NY2 (GRT-6915)	K3, K10, K25, KZ1, KZ3, KZ25
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 1 SAE 1.25″ straight inlet port, tricolor visible dirt alarm	GRT1KBGZ10S20NNY2 (GRT-6916)	KBG3, KBG10, BG25, KBGZ1, BGZ3,KBGZ25
Low Pressure, Tank-Mounted	LRT	150 gpm, 100 psi, 2 SAE 1.5″ straight inlet ports, tricolor visible dirt alarm	LRT18LZ10S24S24NY2 (LRT-1820)	N/A
Low Pressure, Spin-On	PAF1	20 gpm, 100 psi, 3/4″ NPTF porting, tricolor visible dirt alarm	PAF16PZ10PY2	N/A
Low Pressure, Top-Ported	GKF3	100 gpm, 300 psi, 1 element, SAE 1-7/8"-12 straight porting, cartridge dirt alarm	GKF31KGZ25SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Medium Pressure, Top-Ported	SRLT	25 gpm, 1400 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	SRLT6RZ10S12D5	6RZ3, 6RZ25
Medium Pressure, Top-Ported	RLT	70 gpm, 1000 psi, 9" element, SAE 1-5/8"-12 straight porting, cartridge dirt alarm	RLT9VZ10S20D5	9V25, 9VZ25

v.040224

2024 | L-2520

Working with over 100 partners worldwide, Schroeder Industries remains at the forefront in the fields of fluid conditioning, diagnostics, and specialized energy products. Our Hydraulic and Lubrication division provides exceptional products and services benefiting a broad range of industrial applications, including:

- Automotive
- ♦ Oil & Gas

Oil Recycling & Reclaimation

- Agriculture
- Chemical Processing
- Defense
- Forestry
- Industrial
- Machine Tools
- Marine
- Mining Technology
- Mobile Vehicles
- Offshore

Printing

Plastic Injection

Power Generation

- Pulp & Paper
- Railroads
- Recreation
- 🔶 Refuse
- Steel Making
- And More!

Scan to view the digital Hydraulic and Lubrication catalog, or visit:

schroederindustries.com/resources/literature-catalogs

*To access more information about Schroeder industries, scan the code with your app-enabled smartphone. © Copyright 2024 Schroeder Industries. All rights reserved www.schroederindustries.com | 580 West Park Road | Leetsdale, PA 15056-1025 | 724.318.1100 p | sisales@schroederindustries.com

