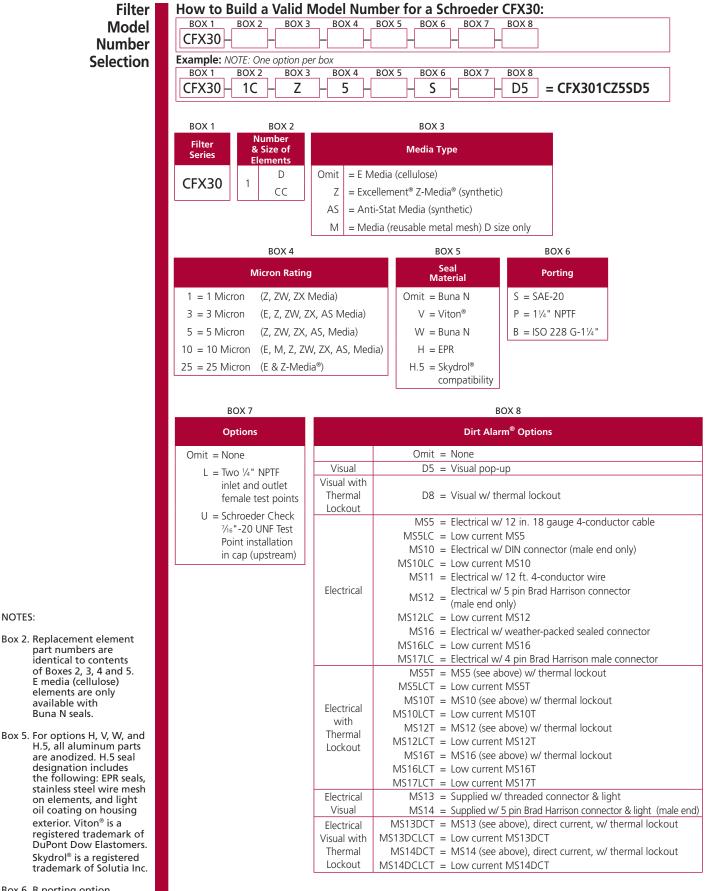

Non-Bypassing Pressure Filter **CFX30**

Model No. of filter in photograph is CFX3	 Features and Benefits Top-ported non-bypassing pressure filter Unique valve eliminates need for high collapse elements Offered in pipe, SAE straight thread and ISO 228 porting Integral inlet and outlet female test points option available 	30 gpm <u>115 L/min</u> 3000 psi 210 bar	NF30 NF530 YF30 CFX30 PLD DF40 CF40 RF550 RF60 CF60
Model No. of filter in photograph is crive		-	CTF60 VF60
		Applications	LW60
	MACHINE MOBILE		KF30
MANUFACTURING	TOOL VEHICLES		TF50
			KF50
			KC50
			MKF50
			KC65
		NC)F30-05
		NOF	50-760
		FC)F60-03
			NMF30
Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	3000 psi (210 bar)	Housing	RMF60
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1	Specifications	rtridge
Rated Fatigue Pressure:	1800 psi (125 bar), per NFPA T2.6.1-2005		ements
Temp. Range:	-20°F to 225°F (-29°C to 107°C) Non-Bypassing		
Bypass Setting: Porting Head:	Non-вуразsing Aluminum		HS60
Element Case:	Steel		MHS60
Weight of CFX30-1CC:	19.5 lbs. (8.9 kg) 4.00" (100 mm)		
Element Change Clearance:			KFH50

CFX30 Non-Bypassing Pressure Filter

Metric dimensions in ().

54 SCHROEDER INDUSTRIES


Element Performance Information		4	Itration Ratio Per I 1572/NFPA T3.10.8 article counter (APC) cal	Filtration Ratio wrt ISO 16889 Using APC calibrated per ISO 11171		
	Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \geq 1000$
	CC3	6.8	7.5	10.0	N/A	N/A
	CC10	15.5	16.2	18.0	N/A	N/A
	CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
	CCZ3/CAS3/CCAS3	<1.0	<1.0	<2.0	<4.0	4.8
	CCZ5/CAS5/CCAS5	2.5	3.0	4.0	4.8	6.3
	CCZ10/CAS10/CCAS10	7.4	8.2	10.0	8.0	10.0
	CCZ25	18.0	20.0	22.5	19.0	24.0

Dirt Holding	Element	DHC (gm)		
Capacity	CC3	30		
	CC10	25		
	CCZ1	57		
	CCZ3/CAS3/CCAS3	58		
	CCZ5/CAS5/CCAS5	63		
	CCZ10/CAS10/CCAS10	62		
	CCZ25	63		
	Element Collapse Rating: 1	50 psid (10 bar) for standard elements		
	Flow Direction: Outside In			
	Element Nominal C Dimensions:	C: 3.0" (75 mm) O.D. x 9.5" (240 mm) long		

Non-Bypassing Pressure Filter **CFX30**

	1	Type Fluid	Appropriate Sch	roeder Media			Fluid	NF30
Pet	roleum Ba	sed Fluids	All E Media (cellulo	se), Z-Media [®] and ASP Media (synthetic)		Compatibility	NFS30
I	High Wate	r Content	All Z-Media [®] and A	SP Media (synthetic)				111 000
	Invert	Emulsions	10 and 25 µ Z-Mec	lia [®] (synthetic), 10 μ ASP Media	a (synthetic)			YF30
	Wat	er Glycols	3, 5, 10 and 25 µ Z	-Media (synthetic), 3, 5 and 10) µ ASP Media	(synthetic)		CEV/20
	Phosph	ate Esters	All Z-Media [®] and A	SP Media (synthetic) with H (EF	PR) seal designa	ation		CFX30
		Skydrol®		2-Media [®] (synthetic) with H.5 se mesh in element, and light oil o			Skydrol [®] is a registered trademark of Solutia Inc	PLD
Pressure	Elei Series	ment Part No.		ns are predicated on the us fluid. Non bypass with sta			Element Selection	DF40
		CC3	<u> </u>	1CC3		See CFN or KFX	Based on Flow Rate	CF40
	E Media	CC10		1CC10	I		FIOW Rate	PF40
	Ivicula	CC25		1CC25				
To 3000 psi		CCZ1		1CCZ1	Se	ee CFN or KFX		RFS50
(210 bar)	7	CCZ3		1CCZ3				DECO
	Z- Media®	CCZ5		1CCZ5				RF60
		CCZ10		1CCZ10				CF60
		CCZ25		1CCZ25				CIUU
	Flow	51	0 5		20 25			CTF60
Shown abov	ve are the e	(=)	o 25 ost commonly used ir	50 75		100 115		VF60
				h Water Content, Invert Emu Ipatibility: Fire Resistant Fluid				LW60
∆P _{housing}				$\Delta \mathbf{P}_{element}$			Pressure	KF30
CFX30 ΔP _{hot}	using for fluid	ds with sp gr	= 0.86:	$\Delta P_{element} = flow x element$	nt ∆P factor x v	viscosity factor	Drop	
not	5			El. ΔP factors @ 150 SUS	(32 cSt):		Information	TF50
16		ow (L/min) (50) (75)	(100)		1CC		Based on Flow Rate	VEED
14		<u></u>	(1.00)	CC3	.22		and Viscosity	KF50
12		Ś.	(0.75)	CC10 CC25	.13 .03		-	
isd 10 d⊽ 8			(0.50) (Dat			_		KC50
6			(0.50)	CCZ1	.35			KC50
4				CCZ3/CAS3/CCAS3				KC50 MKF50
2		LEEN E	(0.25)	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5	.35 .20 .19			MKF50
			(0.25)	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10	.35 .20 .19 .10			
2 0 0		15 20 low gpm		CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9.	.35 .20 .19 .10 .05 ars & L/min, di		NC	MKF50
sp gr = spec	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9. Viscosity factor: Divide	.35 .20 .19 .10 .05 ars & L/min, di viscosity by 1	50 SUS (32 cSt).		MKF50 KC65
Sizing of ele	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9.	.35 .20 .19) .10 .05 ars & L/min, di viscosity by 1! Element Selec	50 SUS (32 cSt).	NO	MKF50 KC65 DF30-05
	F ific gravity	low gpm	25 30	$\frac{CCZ3/CAS3/CCAS3}{CCZ5/CAS5/CCAS5}$ $\frac{CCZ5/CAS5/CCAS5}{CCZ10/CAS10/CCAS10}$ $\frac{CCZ25}{CCZ25}$ If working in units of bactering the second structure of the second structur	35 20 19)10 05 ars & L/min, di viscosity by 1! Element Selec • ΔP element • labeled "Ele	50 SUS (32 cSt). tion chart above. ement Sizing"	NO	MKF50 KC65 DF30-05 F50-760
Sizing of ele	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9. Viscosity factor: Divide Information provided in the B ΔPfilter = $\Delta P_{housing}$ + The ΔP housing curve is the pressure drop b outlet areas of the filt should be used for filt	.35 .20 .19 .05 ars & L/min, di viscosity by 1! Element Select • AP element e labeled "Ele vetween the in cer's bypass va ter sizing. Alt	50 SUS (32 cSt). ttion chart above. ement Sizing" nlet and alve and though	NO	MKF50 KC65 DF30-05 F50-760 DF60-03
Sizing of ele	F ific gravity	low gpm	25 30	$\frac{CCZ3/CAS3/CCAS3}{CCZ5/CAS5/CCAS5}$ $\frac{CCZ5/CAS5/CCAS5}{CCZ10/CAS10/CCAS10}$ $\frac{CCZ25}{CCZ25}$ If working in units of bactor by 54.9. <i>Viscosity factor:</i> Divide the formation provided in the forma	.35 .20 .19 .05 ars & L/min, di viscosity by 1! Element Select • AP element e labeled "Ele vetween the in cer's bypass va ter sizing. Alt ot a factor in	50 SUS (32 cSt). Ition chart above. Itement Sizing" nlet and alve and though the lement	NOI FC	MKF50 KC65 DF30-05 F50-760 DF60-03 NMF30
Sizing of ele	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9. Viscosity factor: Divide Information provided in the B ΔP _{filter} = $\Delta P_{housing}$ + The ΔP housing curve is the pressure drop b outlet areas of the filt should be used for filt "Port to Port" ΔP is n Selection, it should be	.35 .20 .19 .05 ars & L/min, di viscosity by 1! Element Select • AP element e labeled "Ele vetween the in cer's bypass va ter sizing. Alt ot a factor in	50 SUS (32 cSt). Ition chart above. Itement Sizing" nlet and alve and though the lement	NOI FC	MKF50 KC65 DF30-05 F50-760 DF60-03 NMF30 RMF60 artridge
Sizing of ele	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9. Viscosity factor: Divide Information provided in the B ΔP _{filter} = $\Delta P_{housing}$ + The ΔP housing curve is the pressure drop b outlet areas of the filt should be used for filt "Port to Port" ΔP is n Selection, it should be	.35 .20 .19 .05 ars & L/min, di viscosity by 1! Element Select • AP element e labeled "Ele vetween the in cer's bypass va ter sizing. Alt ot a factor in	50 SUS (32 cSt). Ition chart above. Itement Sizing" nlet and alve and though the lement	NOI FC Ca El	MKF50 KC65 DF30-05 F50-760 DF60-03 NMF30 RMF60 artridge ements
Sizing of ele	F ific gravity	low gpm	25 30	CCZ3/CAS3/CCAS3 CCZ5/CAS5/CCAS5 CCZ10/CAS10/CCAS10 CCZ25 If working in units of ba factor by 54.9. Viscosity factor: Divide Information provided in the B ΔP _{filter} = $\Delta P_{housing}$ + The ΔP housing curve is the pressure drop b outlet areas of the filt should be used for filt "Port to Port" ΔP is n Selection, it should be	.35 .20 .19 .05 ars & L/min, di viscosity by 1! Element Select • AP element e labeled "Ele vetween the in cer's bypass va ter sizing. Alt ot a factor in	50 SUS (32 cSt). Ition chart above. Itement Sizing" nlet and alve and though the lement	NOI FC Ca El	MKF50 KC65 DF30-05 F50-760 DF60-03 NMF30 RMF60 artridge ements HS60

FX30 Non-Bypassing Pressure Filter

Box 6. B porting option supplied with metric mounting holes.

NOTES: